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Abstract: The scarcity of high-quality data presents a major challenge to the prediction of material
properties using machine learning (ML) models. Obtaining material property data from experiments
is economically cost-prohibitive, if not impossible. In this work, we address this challenge by
generating an extensive material property dataset comprising thousands of data points pertaining
to the elastic properties of Fe-C alloys. The data were generated using molecular dynamic (MD)
calculations utilizing reference-free Modified embedded atom method (RF-MEAM) interatomic
potential. This potential was developed by fitting atomic structure-dependent energies, forces,
and stress tensors evaluated at ground state and finite temperatures using ab-initio. Various ML
algorithms were subsequently trained and deployed to predict elastic properties. In addition to
individual algorithms, super learner (SL), an ensemble ML technique, was incorporated to refine
predictions further. The input parameters comprised the alloy’s composition, crystal structure,
interstitial sites, lattice parameters, and temperature. The target properties were the bulk modulus
and shear modulus. Two distinct prediction approaches were undertaken: employing individual
models for each property prediction and simultaneously predicting both properties using a single
integrated model, enabling a comparative analysis. The efficiency of these models was assessed
through rigorous evaluation using a range of accuracy metrics. This work showcases the synergistic
power of MD simulations and ML techniques for accelerating the prediction of elastic properties
in alloys.

Keywords: machine learning; molecular dynamics; density functional theory; MEAMfit; RF-MEAM;
elastic properties; mechanical properties

1. Introduction

The prediction of material properties using computational tools can serve as a crucial
guide to the experimental material design process [1]. Computational methods like density
functional theory (DFT) and molecular dynamics (MD) are able to compute material
properties accurately, allowing researchers to gain meaningful and prompt insights into
the material properties of interest [2]. However, their applicability is constrained by
limitations in length (restricted to a few nanometers [3,4]) and time scale (limited to a few
nanoseconds [5–7]) that can be explored efficiently and effectively.

In recent years, machine learning (ML) has gained popularity for predicting mate-
rial properties as evidenced by notable studies [8–12]. For ML, the data availability is a
significant hurdle. The integration of ML with these multi-level computational material
tools addresses the individual limitations of each method, accelerating the novel material
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discovery. This synergy solves the data scarcity in ML by generating a plethora of data
using DFT and MD and the time limitation of the computational tools by using ML that
further expedites the materials exploration process.

Numerous studies have harnessed ML models to predict mechanical properties, in-
cluding tensile strength, yield strength, hardness, and elongation, across various alloy
systems. Here, we present a literature review that underscores the diverse applications of
ML in predicting alloy mechanical properties and subsequently focus on its application in
predicting steel properties.

The quest to predict the mechanical properties of alloys using machine learning has
seen significant advancements across various alloy systems. Hu et al. [13] proposed a novel
feature engineering method integrating chemical compositions and manufacturing pro-
cesses, achieving high prediction accuracy for wrought aluminum alloys. Deng et al. [14]
further refined this approach, employing a sequential minimal optimization algorithm to
predict copper-aluminum alloys’ tensile strength and hardness. With the guidance of their
model, they successfully developed an alloy meeting specific mechanical property targets.

Devi et al. [15] compared multiple ML models for predicting aluminum alloys’ tensile
strength and hardness, demonstrating the efficacy of algorithms like K-nearest neigh-
bors (KNN) and artificial neural networks (ANN) in this domain. Similarly, Xu et al. [16]
employed ANN and support vector machine (SVM) models to predict properties in
magnesium alloys, showcasing the potential for relating composition, processing, and
mechanical properties.

Choyi [17] applied ML techniques to screen and identify promising alloy compositions
for experimental testing in aluminum alloys. Ling [18] extended this approach by utilizing
ensemble ML to predict mechanical properties and phase transformation temperatures
for various alloy classes, enabling an inverse design framework for creating new alloys
meeting specific specifications.

Lu et al. [19] focused on magnesium-rare earth alloys, utilizing SVR-based ML models
to predict multiple mechanical properties with considerable accuracy. Tan et al. [20],
employing a simpler ML model, provided a foundational tool for predicting mechanical
properties in multi-principal element alloys based solely on composition data.

Zhang et al. [21] and Lee et al. [22] explored steel alloys, utilizing ML to predict
tensile strength and yield strength while employing various algorithms and input param-
eters. Shen et al. [23] pioneered a physical metallurgy-guided ML approach, integrating
equilibrium volume fraction and driving force for precipitation into their models for
predicting hardness, leading to the design of ultrahigh-strength stainless steel with remark-
able accuracy. Further extending these methodologies, Mahfouf [24], Gaffour et al. [25],
Dutta et al. [26], and Pattanayak et al. [27] utilized a range of ML techniques such as artifi-
cial neural networks (ANN), genetic algorithms (GA), and hybrid models to model mechan-
ical properties, optimize compositions, and predict mechanical performance across various
steel alloys, showcasing the potential of these methods in alloy design and optimization.

A thorough review of the literature [13–27] above demonstrates that various ML algo-
rithms such as LR, SVM/SVR, RF, ANN, KNN, and GPR are effective at making predictions.
Notably, some studies have also explored ensemble techniques such as XGBoost, AdaBoost,
and SL to enhance predictive accuracy. The majority of these studies utilized composition
and process parameters as their primary inputs. Among the commonly employed process
parameters were heat treatment temperature, heating duration, choice of cooling medium,
and others. Hence, a broad spectrum of strategies have been applied in materials property
prediction through ML methodologies.

In this work, we aim to demonstrate a framework to predict the elastic properties
of iron-carbon systems using the synergistic effect of multiscale computational material
tools (DFT and MD) and ML. MD calculations using the interatomic potential, produced by
fitting on DFT-calculated data, generate the dataset, which is subsequently utilized to train
the ML model for the expedited prediction of elastic properties.
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2. Data and Methods
2.1. Potential Development

Potential development methodology and calculation details have been discussed
in our previous publication [28]. Here, we briefly summarize the process to provide a
complete picture of the framework that integrates the previous work with the ML model
for elastic properties prediction.

The inter-atomic potential was developed by fitting the potential parameters to the
forces, energies, and stress tensors of various ordered structures of Fe-C calculated by
first principle calculations using Vienna Ab initio Simulation Package (VASP) [29] with
the projector augmented wave (PAW) [30] pseudopotentials. The exchange-correlation
function was calculated using the Perdew–Burke–Ernzerhof Generalized-Gradient Approx-
imation (GGA-PBE) [31]. These precise data were fitted into 78 parameters of RF-MEAM
potential [32] using a potential fitting code called MEAMfit [33]. Thus, the produced po-
tential was used to perform MD calculation on LAMMPS [34] to reproduce the properties
of the structures used during the fitting process. The potential was further verified by
calculating elastic moduli for the disordered structures at various finite temperatures.

2.2. Data Collection/Calculation

The training data for ML were generated through MD simulations using the developed
RF-MEAM potential. These calculations were performed on various ordered and disordered
structures. The ordered structures used are B1, B3, and Cementite, whereas the disordered
alloy structures used were Fe-C with fcc and bcc base structures, each with octahedral and
tetrahedral interstitial carbon atoms. For these disordered alloys, the composition of carbon
was varied. The carbon concentrations used were 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, and
20 atomic percentage. These structures were subjected to temperatures from 0 K to 1200 K
in 50 K increments and elastic properties were calculated at each temperature. In total,
1375 data points were obtained and used for this study.

The atomic structure is initially equilibrated at the desired temperature using the NPT
ensemble, allowing the system to equilibrate under constant temperature and pressure
conditions. The equilibrated structures are then subjected to positive and negative defor-
mations (i.e., deformation applied along specific axes in two opposite directions) in six
directions, corresponding to the Voigt deformation components. These deformations were
applied to investigate the material’s response to mechanical stress. After each deformation,
the structures were equilibrated again using the NVE ensemble. The resultant change
in stress within the structure was measured after each deformation. These data were
used to compute the elastic stiffness tensor, which characterizes the material’s response to
mechanical deformation. Once we have the elastic stiffness tensors, Voigt equation

BV =
1
9
(c11 + c22 + c33) +

2
9
(c12 + c13 + c23), (1)

and
GV =

1
15

(c11 + c22 + c33 − c12 − c13 − c23) +
1
5
(c44 + c55 + c66), (2)

Reus equation

BR =
1

(s11 + s22 + s33) + 2(s12 + s13 + s23)
, (3)

and
GR =

1
4(s11 + s22 + s33)− 4(s12 + s13 + s23) + 3(s44 + s55 + s66)

, (4)

and Hill equation

BH =
1
2
(BR + BH) (5)
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and
GH =

1
2
(GR + GH) (6)

are used to calculate the macro elastic constants like bulk modulus, and rigidity modulus.
The Youngs modulus can be calculated using equation

EH =
9BHGH

3BH + GH
. (7)

These three elastic constants are used as the target properties for our ML study.

2.3. Input Parameters

The input parameters for ML should be meticulously selected to correlate well with the
output target properties. So, we initially did a simple visual analysis by plotting the target
properties vs. the possible input parameters. The purpose of this visual test is to observe
if there is any relationship between the input and the output no matter how complicated
the relation is. The input parameters we used are temperature, composition, base lattice
structure type, interstitial sites, Ordered or Disordered, and three lattice constants a, b,
and c.

Next, feature importance is calculated to see the effect of each input feature on the
target properties. We used an RF regressor to calculate and feature importance library from
yellow-brick to visualize feature importance.

2.4. ML Algorithms

Various ML algorithms were employed in this study to perform predictions using two
distinct approaches, as shown in Figure 1. The first approach uses a multi-variate model to
predict both the bulk and rigidity modulus and subsequently calculate Young’s modulus
from these simultaneously predicted results. The second approach utilizes two separate
models, each trained independently to predict their respective target properties, and then
Young’s modulus is computed from the calculated bulk (B) and rigidity (G) modulus values.

(a) (b)

Figure 1. Two different approaches used for the properties prediction: (a) multivariate method, and
(b) independent method.

This study employed a selection of individual algorithms known for their effective-
ness in predicting material properties. Additionally, the ensemble algorithm named SL is
utilized, which has demonstrated efficacy in combining the strengths of individual algo-
rithms, making it particularly well-suited for small to medium-sized datasets, such as the
one used in this study. The specific algorithms used in this study, along with the SL, are
discussed below.
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2.4.1. Random Forest (RF)

RF is a bagging algorithm technique that combines multiple decision trees to determine
the final result rather than relying on individual decision trees [35]. RF has numerous
decision trees as base learning models. In RF, row and feature sampling are performed from
the dataset creating sample datasets for every model. This part is called Bootstrap. Every
decision tree has high variance, but when we combine them all in parallel, the resultant
variance is low as each decision tree is perfectly trained on that particular sample data.
Hence, the output does not depend on one decision tree but on multiple decision trees [36].
For a classification problem, the final output is taken using the majority voting classifier.
Likewise, for a regression problem, the final output is the mean of all the outputs. This part
is Aggregation [37].

2.4.2. Extreme Gradient Boosting (XGBoost)

XGBoost is a ML method that combines the predictions of multiple weak Decision
Tree (DT) models to produce a more robust prediction [38]. Initially, a model is built from
the training data. Then, the second model is built to rectify the errors in the first model.
The procedure is continued, and models are added until the complete training data set has
been predicted or classified correctly or the maximum number of models has been added.

XGBoost, operating through a sequential process, constructs decision trees. All the in-
dependent variables fed into the decision tree are assigned weights, which play an essential
role in XGBoost. The weight of variables predicted wrong by the tree is increased, and these
variables are then fed to the second decision tree. These individual classifiers/predictors
then ensemble to give a strong and more precise model. It can work on regression, classifi-
cation, ranking, and user-defined prediction problems [39].

2.4.3. Support Vector Machine (SVM)

SVM is a robust supervised ML algorithm used for both classification and regression
tasks [40]. SVM seeks the optimal hyperplane that best separates data points belonging
to different classes while maximizing the margin between the classes. Support vectors,
which are the data points closest to the decision boundary, are crucial in determining
the hyperplane [41]. SVM works well for both linear and non-linear classification prob-
lems using kernel functions such as linear, polynomial, sigmoid kernels, and radial basis
functions (RBF).

SVM is known for its ability to perform well in high-dimensional spaces and its
effectiveness in cases where the data are not linearly separable. It is widely used in
applications like image classification, text classification, and bioinformatics [42].

2.4.4. K-Nearest Neighbor (KNN)

KNN is a simple yet effective supervised ML algorithm used for classification and
regression tasks [43]. KNN operates on the principle of identifying the ‘K’ nearest data
points within the training set to a new, unseen data point and making predictions based
on the majority class (for classification) or averaging (for regression) among those ‘K’
neighbors [44]. The choice of K, the number of nearest neighbors, is a critical parameter
that affects the algorithm’s performance.

KNN is a non-parametric and instance-based algorithm, meaning it does not make
explicit assumptions about the underlying data distribution. It works well for linear and
non-linear data and is particularly useful for problems with complex or irregular decision
boundaries [45]. However, its computational complexity increases with the size of the
training dataset, making it less suitable for large-scale applications [46].

2.4.5. MultiLayer Perceptron (MLP)

MLP, the most widely used neural network structure, consists of multiple layers of
three types, i.e., input layer, output layer, and multiple hidden layers. The input layer
receives the input signals to be processed. The output layer performs the required tasks,
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such as prediction and classification [47]. The hidden layers, placed in between the input
and output layers, are the true computational engine of the MLP. Data passes in a forward
path from the input to the output layer in MLP, equivalent to a network in feed-forward.
The backpropagation learning technique is used to train all the nodes in the MLP. MLPs can
fix issues that are not linearly separable and are structured to approximate every continuous
function [48].

As with all neural networks, the dimension of the input vector dictates the number of
neurons in the input layer, while the number of classes to be learned dictates the number
of neurons in the output layer. The number of chosen hidden layers and neurons in each
layer must be empirically determined. As a rule of thumb, the neurons in the hidden layers
are chosen as a fraction of those in the input layer. However, there is a trade-off regarding
the number of neurons: Too many neurons produce over-training; too few neurons affect
generalization capabilities [49]. In this study, three hidden layers are used and the number
of neurons in each layer is determined by the hyperparameter optimization.

2.4.6. Gaussian Process Regression (GPR)

GPR is a probabilistic ML algorithm that, unlike many other ML models, allows for
the prediction of the underlying uncertainties in its predictions [50]. GPR’s adaptability
is another standout feature; it excels at modeling complex relationships in data without
requiring rigid functional forms or predefined features. This adaptability is highly beneficial
when dealing with noisy or limited datasets, enabling GPR to capture intricate patterns
effectively [51].

However, GPR’s suitability depends on the specific characteristics of the problem.
While it excels in scenarios with small datasets and noisy observations, it performs optimally
in low-dimensional problems, stable design spaces, and moderately sized datasets [52].
Despite this specialization, GPR remains an invaluable tool in various domains, where
its ability to provide probabilistic predictions and account for uncertainties makes it a
vital asset in critical decision-making processes. Whether in geostatistics [53], finance [54],
robotics [55], or materials [51], GPR’s probabilistic nature ensures that decision-makers
receive accurate predictions and gain crucial insights into the confidence level associated
with those predictions, ultimately enhancing the quality of informed decisions.

2.4.7. Super Learner (SL)

SL is an ensemble ML approach designed to improve predictive accuracy and robust-
ness by combining multiple base models or learning algorithms, encompassing a wide
array of ML algorithms, from decision trees to neural networks. The concept aims to find
the optimal combination of models to achieve the best possible prediction performance [56].
These single algorithm (base) models are trained on the same dataset, and their predictions
are recorded as “meta-features”. Then, a meta-learner is introduced to the mix, which
learns how to combine or weight the base models’ predictions optimally. This meta-learner,
which can be as simple as linear regression or more complex like a neural network, aims to
extract the best predictive insights from the collective knowledge of the base models.

SL’s appeal lies in its ability to deliver superior predictive performance consistently. It
often outperforms any single base model in isolation by leveraging various models and
learning algorithms. Furthermore, it enhances the robustness of predictions by reducing the
risk of overfitting, as it avoids relying too heavily on the peculiarities of any one model [57].
Its flexibility is also noteworthy, as it can adapt to various data types and domains, offering
a versatile solution for diverse ML challenges. Overall, the SL serves as a valuable tool for
data scientists and ML practitioners seeking to maximize prediction accuracy and automate
the model selection process while benefiting from the collective intelligence of multiple
models [58].
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3. Results and Discussion
3.1. Potential Verification

The developed interatomic potentials (i.e., different potentials fitted on various combi-
nations of structures) were used to reproduce the elastic properties of various ordered and
disordered alloys of Fe-C.

At first, energy as a function of volume was calculated for the ordered structures and
fitted to the Birch–Murnaghan equation of state to obtain the bulk modulus of elasticity
and its pressure derivative. These outputs were compared to experimental and DFT results
in order to assess the accuracy and reliability of the potentials, allowing us to identify the
best potential. Upon comparing the results from the potentials fitted on various distinct
dataset combinations, it was found that the potential fitted on the dataset containing B1
and Cementite reproduced most of the alloy results faithfully. The RF-MEAM interatomic
potential, referred to hereafter, is the potential fitted on the B1 and Cementite datasets.
Table 1 details the results for equilibrium volume (V0), bulk modulus (B0), and pressure
derivative of bulk modulus (B0

′
) produced by our best DFT potential in comparison to the

experimental and DFT results from the literature. From the table, it is apparent that the
results from our best potential are in very good agreement with the literature.

Table 1. Comparison of our results with the published DFT data for equilibrium volume, bulk
modulus, and pressure derivative calculated by the Birch–Murnaghan equation of state.

Structure
V0 (Å3) B0 (GPa) B0

′

RF-
MEAM Literature RF-

MEAM Literature RF-
MEAM Literature

B1 (FeC) 65 64 a,b 338 329 a 5.28 4.40 a

Cementite
(Fe3C) 155 154 a 252 234 a 4.05 4.00 a

a Henriksson et al. [59]; b Chihi et al. [60].

Figure 2 compares the cohesive energy versus volume curve for (a) B1 and (b) Cemen-
tite with the DFT and experimental results, respectively, as reported by Lalitha et al. [61].
As seen in the figure, our calculated curves are in good agreement with the reported literature,
with the equilibrium volume deviation of 2.4%, and 1.2% for B1, and Cementite, respectively.
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Figure 2. Comparison of energy vs. volume curves for (a) B1, and (b) Cementite with experi-
mental and DFT results. Both DFT and experimental results used for the comparison are from
Lalitha et al. [61].
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The best RF-MEAM potential was then used to reproduce the elastic properties of
the disordered alloys of Fe-C at various temperatures. Young’s modulus of elasticity
for FeC-0.2% and FeC-0.4% were calculated and compared with the experimental data
reported by [62] and the SMM (Statistical Moment Method) calculated data reported by
Tinh et al. [63]. The comparison is depicted using the graph in Figure 3. As seen in the
figure, Young’s modulus decreased with increasing temperatures and closely follows the
experimental curve in the case of both disordered alloys. For both alloys, our potential
was able to reproduce Young’s modulus for a wide range of temperatures more accurately
(i.e., closely following the experimental result) than the previously reported SMM result.
Detailed results on potential verification can be found in our previous work [28].
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Figure 3. Young’s moduli of interstitial Fe-C alloys: (a) FeC-0.2% and (b) FeC-0.4% at various
temperatures. For comparison, experimental [62] and SMM-calculated data by Tinh et al. [63] are
also included.

3.2. Data Analysis and Feature Selection

From the MD calculation result, we extracted temperature, carbon composition, and
other structural parameters, including lattice constants, base structure, interstitial site
placements, alloy type (i.e., ordered or disordered), and the calculated elastic moduli. To
gain insights into potential input features for our ML study, we plotted the elastic moduli
against these possible input features.

As shown in Figure 4, bulk and rigidity modulus tends to decrease as the temperature
increases for all ordered structures (i.e., B1, B3, and Cementite). This figure also sheds light
on the influence of structural features on elastic properties. However, it is not clear whether
this effect is due to the lattice type or other structural parameters like lattice constants.
Hence, both the lattice type and the lattice constants are taken as input features for our
prediction model.
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(a) (b)

Figure 4. Elastic Modulus vs. Temperature for ordered structures: (a) Bulk Modulus vs. Temperature.
(b) Rigidity Modulus vs. Temperature.

Figure 5 shows the relationship between the elastic moduli and temperatures for the
fcc-FeC (1% C) structure with carbon occupying octahedral and tetrahedral interstitial
sites. Notably, we discerned that these properties exhibited small variations depending on
the position of the carbon interstitial site. When carbon was situated at octahedral sites,
both the bulk and rigidity modulus exhibited higher values than when carbon occupied
tetrahedral sites. Consequently, we included the carbon interstitial site locations in our
pool of potential input features.

(a) (b)

Figure 5. Elastic Modulus vs. Temperature for Fe-C (1% C) disordered alloy with C at different
interstitial sites. (a) Bulk Modulus vs. Temperature, (b) Rigidity Modulus vs. Temperature.

Figure 6 represents the relationship between the elastic moduli and carbon compo-
sition at different temperatures for the fcc-FeC alloy. In this figure, we observed that
increasing carbon composition led to an increase in the bulk modulus, up to approximately
15%, before exhibiting a gradual decrease at higher concentrations. Simultaneously, the
rigidity modulus decreased with both an increase in carbon concentration and elevated
temperatures. Young’s modulus is not presented in any of the three cases (Figures 4–6), as
it exhibited a consistent and parallel pattern to the shear modulus, owing to the greater
weightage of shear modulus compared to bulk modulus in Equation (7).
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(a) (b)

Figure 6. Elastic Moduli vs. Composition for various disordered Fe-C alloys with octahedral
interstitial C atoms. (a) Bulk Modulus vs. Composition, (b) Rigidity Modulus vs. Composition.

Based on the data analysis above, we selected eight key input features to capture the
essential variables that influence the properties of our materials. These features include
temperature (Temp), carbon composition (CC), alloy type (Alloy), i.e., order or disorder
alloy, interstitial sites of carbon (Int. Sites), lattice structure type (Str), and lattice constants:
La, Lb, and Lc.

Temperature, which is a critical parameter, ranges from 0 to 1200 K, with increments
of 50 K, providing a comprehensive range of temperature conditions to evaluate material
behavior. Carbon composition is another vital input, varying from 1 to 20% for disordered
alloys and up to 50% for ordered alloys, encompassing a wide spectrum of compositions
relevant to our study. Another important input feature is lattice type which covers four
major lattice types: FCC, BCC, orthorhombic, and simple cubic, ensuring that we account
for a diverse set of structural configurations. Additionally, we have included interstitial
sites of carbon as a feature, with variations in octahedral, tetrahedral, planar, and basal
interstitial sites. This inclusion allows us to explore the impact of carbon placement within
the lattice on material characteristics.

Next, feature analysis was performed using the ML algorithm, and RF regressor, where
feature importance scores were calculated for each input feature as shown in Figure 7.
Upon calculating the feature importance of the eight features against the target output, it
was observed that temperature (Temp) was the most important feature, with the feature
important score of 0.52. Following Temp, lattice constants (Lc, La, and Lb), type of alloy
(Alloy), carbon concentration (CC), and interstitial sites (IntSites) were also found to be
significant. Lattice structure (Str) had a feature importance score of less than 1%, which
shows that it has less impact on the target output.

The interatomic potential used to perform the MD calculation was developed on the
data of just two structures of Fe-C, i.e., B1 and Cementite. So, the result obtained from
MD calculation using such potential might not be sensitive to the lattice structure type.
This might have resulted in the lower feature importance of lattice structure (Str) while
predicting the elastic moduli.
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Figure 7. Feature Importance of eight input features for elastic properties prediction.

3.3. Feature Elimination and Hyperparameter Tuning

Before making decisions about eliminating features based on their importance scores,
we conducted another test to understand how the removal of less important features would
impact the predictive accuracy of our ML models. Hence, we prepared two different
datasets, one with seven features and another with all (eight features). As discussed
in the “Data and Method” section, various algorithms were used on these datasets to
make the prediction. Furthermore, two different approaches were tried: (a) training
two independent models to predict B and G, and (b) training a multi-variate model to
predict both B and G simultaneously. For all cases, the data were split into 80:20 training
and test sets. The training set was used to train the models, and the test set was used to
assess the models’ accuracy.

In parallel, we also performed hyperparameter tuning, which involves exploring
various hyperparameters for each algorithm and selecting the most optimum solution
based on the cross-validation (CV) score. Five fold CV was applied on the training set.
First, individual algorithms were tuned for each dataset and method. Subsequently, for
SL, the hyperparameter-tuned individual algorithms were taken as the base predictors,
and at the same time, all of these were tried one by one for meta learners while tuning the
hyperparameters of the meta estimator. Among all the individual algorithms tried, MLP
gave the least mean square error CV score, thus was finalized as the meta estimator.

Table 2 presents the results of our experiments, showcasing the best CV scores, mea-
sured in terms of mean squared error (MSE), for each of the cases. The table shows a
consistent pattern across all algorithms and models: the dataset with seven parameters
consistently yields the same or superior performance compared to the dataset with eight
parameters. It can be deduced that the eighth parameter, i.e., lattice structure (L) produces
a neutral or negative impact on the prediction. Hence, the feature was removed from the
dataset, and the results hereafter use the seven-feature dataset.

We also did a comparative analysis of two distinct approaches: (a) employing individ-
ual models for the separate prediction of the elastic constants B and G, and (b) employing
a multi-variate model to predict these properties simultaneously. Figure 8 provides a
comprehensive overview of this comparison, utilizing six individual models and one en-
semble algorithm, focusing on the MSE as the evaluation metric. These MSE values, unlike
the one presented in Table 2, are calculated using the test dataset, which has not been
used during the model training. Notably, the results shown in the figure clearly favor the
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independent models, which consistently had smaller MSEs across all algorithms. This high-
lights the effectiveness of the independent model when contrasted with the multi-variate
model approach.

Table 2. Best CV scores across different ML models and feature sets during hyperparameter tuning.

Algorithms
Independent Models Multi-Variate Model

B_7 B_8 G_7 G_8 S_7 S_8

RF 8.311 8.377 3.878 3.885 7.046 7.050
KNN 11.051 11.051 3.447 3.447 7.250 7.250
SVM 8.427 8.427 1.646 1.646 10.175 10.175
MLP 5.470 5.485 1.514 1.616 3.520 3.596
GPR 5.036 5.036 1.453 1.453 3.244 3.244

XGBoost 4.868 4.868 1.517 1.517 3.259 3.259
SL 3.876 4.695 1.360 1.441 3.440 3.696

(a) (b)

Figure 8. Assesment of elastic moduli, (a) Bulk modulus and (b) Rigidity modulus, calculated by
independent and simultaneous models using various algorithms.

We then also calculated Young’s modulus of elasticity (E) utilizing Equation (7), and
subjected it to a similar comparative analysis, as illustrated in Figure 9. Once again, the
independent model demonstrated superior performance, showcasing each algorithm’s
lowest MSE when predicting Young’s modulus.

Furthermore, when examining the performance of each algorithm in Figures 8 and 9
concerning the prediction of B, G, and E, some noteworthy trends emerged. In the case of
B prediction, XGBoost, GPR, and SL consistently outperformed others, displaying both
lower prediction errors and reduced error variation. Similarly, when estimating G, MLP,
GPR, and SL demonstrated superior predictive accuracy, with GPR standing out as the
top performer.

Likewise, the prediction of E, MLP, GPR, and SL proved to be the most effective, with
GPR being the most accurate result. Notably, in both Figures 8 and 9, we can also see that
GPR and SL have been consistently effective in predicting all elastic moduli, exhibiting
a narrow range of error variation and reinforcing their reliability in our analysis. The
MSE errors and 95% confidence interval (CI) shown in Figures 8 and 9 are also detailed in
Table 3.
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Figure 9. Assesment of Youngs modulus calculated by independent and simultaneous models using
various algorithms.

Table 3. Comparison for MSE calculated on test set for multi-variate and independent models using
different ML algorithms.

Algorithms
B G E

Multi-Variate Independent Multi-Variate Independent Multi-Variate Independent

KNN 9.09 ± 2.97 9.09 ± 2.97 2.92 ± 1.46 2.90 ± 1.46 18.86 ± 9.81 18.83 ± 9.81
RF 10.20 ± 4.11 8.90 ± 3.21 3.76 ± 1.53 3.21 ± 1.48 24.52 ± 10.45 20.55 ± 10.14

SVM 6.81 ± 4.26 6.80 ± 4.25 1.28 ± 0.52 1.24 ± 0.51 7.96 ± 3.35 7.66 ± 3.33
MLP 8.36 ± 3.21 8.36 ± 3.21 1.08 ± 0.40 1.08 ± 0.40 6.72 ± 2.59 6.71 ± 2.56
XGB 3.99 ± 0.96 3.95 ± 1.09 1.80 ± 0.83 1.80 ± 0.83 11.15 ± 5.42 10.97 ± 5.41
GPR 4.13 ± 1.45 4.13 ± 1.45 1.04 ± 0.35 1.04 ± 0.35 6.32 ± 2.21 6.22 ± 2.20
SL 5.05 ± 1.76 4.00 ± 1.20 1.25 ± 0.40 1.11 ± 0.38 7.77 ± 2.53 6.75 ± 2.38

Now, focusing on the independent model approach for predicting B and G, we pro-
ceeded with the predictions and subsequently calculated E using Equation (7). For the
ease of comparing different algorithms, the calculated Young’s modulus was compared
with its actual counterpart since it will give the aggregate performance of two independent
models. Figure 10 provides a visual representation of these predicted versus actual value
comparisons, complete with their respective R2 scores. Among the seven algorithms used,
four algorithms, namely (a) SVM, (b) MLP, (c) GPR, and (d) SL, showed exceptional perfor-
mance with R2 scores of 0.996, 0.997, 0.997, and 0.997, respectively. It is particularly worth
highlighting that, once again, GPR and SL demonstrated superior performance, reaffirming
their effectiveness in this elastic properties prediction model.
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(a) (b)

(c) (d)

Figure 10. Predicted value versus true value using simultaneous B and G predicting model for top
four algorithms: (a) SVM, (b) MLP (c) GPR, and (d) SL.

4. Conclusions

In conclusion, the RF-MEAM potential, developed by fitting DFT-generated forces,
energies, and stress tensors, was used to generate thousands of data points for ML, focused
on predicting the elastic moduli (i.e., bulk modulus (B), rigidity modulus (G), and Young’s
modulus (E)) for various Fe-C alloys. We explored a broad spectrum of ordered and
disordered alloys, each characterized by varying carbon compositions, and across a range
of elevated temperatures. In our quest to identify key input features for our ML models, we
conducted meticulous data analysis with an in-depth understanding of the input-output
relationships. This process led us to select eight input features: Temp, CC, IntSites, Alloy, Str,
La, Lb, and Lc. RF regressor was used to assess the importance of these features. Temp was
the most influential feature, closely followed by lattice constants and alloy type. Feature
importance followed by the CV accuracy evaluation during hyperparameter optimization
suggested removing the least important feature, lattice structure type (Str).

Furthermore, we investigated two distinct model training approaches: independent
models for B and G prediction and a multi-variate for concurrent B and G prediction. The
independent models approach consistently yielded smaller MSEs across all algorithms,
compellingly endorsing its effectiveness. The predictive capabilities of the independent
model were further affirmed through the accurate prediction of Young’s modulus.
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A thorough analysis of six individual algorithms and one ensemble algorithm was
conducted, with the primary focus on comparing their performance using the R2 metric.
Notably, the independent model approach for B and G prediction showcased remarkable
results, particularly for GPR and SL, both achieving remarkable R2 scores of 0.997 when
predicting E. This outcome further solidifies their standing as robust and dependable
predictors in the context of our study.

Our study has thus contributed valuable insights into the ML prediction of elastic
properties for Fe-C alloys, emphasizing the significance of temperature and a select set of
input features. It underscores the effectiveness of the independent model approach and
the robust performance of GPR and SL, paving the way for enhanced material design and
optimization in materials science.
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