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Abstract 
 
The position of mobile active and inactive ions, specifically ion insertion sites, within 

organic crystals, significantly affects the properties of organic materials used for 

energy storage and ionic transport. Identifying the positions of these atom (and ion) 

sites in an organic crystal is difficult, especially when the element has a low X-ray 

scattering power, such as lithium (Li) and hydrogen, which are difficult to detect with 

powder X-ray diffraction (XRD) methods. First-principles calculations, exemplified by 

density functional theory (DFT), are very effective for confirming the relative stability 

of ion positions in materials. However, the lack of effective strategies to identify ion 

sites in these organic crystalline frameworks renders this task extremely challenging. 

This work presents two algorithms: (i) Efficient Location of Ion Insertion Sites from 

Extrema in electrostatic local potential and charge density (ELIISE), and (ii) 

ElectRostatic InsertioN (ERIN), which leverage charge density and electrostatic 

potential fields accessed from first-principles calculations, combined with the 

Simultaneous Ion Insertion and Evaluation (SIIE) workflow –that inserts all ions 

simultaneously—to determine ion positions in organic crystals. We demonstrate that 

these methods accurately reproduce known ion positions in 16 organic materials and 

also identify previously overlooked low-energy sites in tetralithium 2,6-

naphthalenedicarboxylate (Li4NDC), an organic electrode material, highlighting the 

importance of inserting all ions simultaneously as done in the SIIE workflow.  
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Introduction 
 

Understanding the structure of inorganic and organic-based materials containing 

electroactive elements, such as Li, Na, and zinc (Zn)1–14 is relevant for the 

development of the next generation of rechargeable battery technologies, which are 

prevalent in vehicular transportation, heavy-duty applications, and the supporting 

electrical grids.  

 

With the advent of the Rietveld methods,15–18 diffraction-based techniques using X-ray 

(XRD) or neutron (ND) sources are commonly employed to determine the structures 

of energy materials. However, structural determinations through diffraction methods 

can be hindered by the weak scattering of X-rays by light elements, such as hydrogen 

and lithium (Li), which can partially occupy multiple crystallographic sites because of 

their high intrinsic mobility. In some cases, significant ion mobilities can cause the 

blurring of Bragg intensities.19,20 While ND experiments enhance sensitivity to specific 

elements, e.g., light elements H and Li, ND experiments are significantly less available 

than XRD, and they still face challenges related to disorder, defects, and temperature-

dependent site mixing.21 

 

Organic electrode materials (OEMs) are promising for inexpensive and high-energy-

density rechargeable batteries. Indeed, OEMs can provide three main benefits: (i) high 

material-level energy densities of 900-1000 kWh kg–1, (ii) a growing range of designs 

as shown by the variety of molecules studied so far, and (iii) potential benefits in 

sustainability and supply chains.6,22–26 One of the main challenges hindering the 

practical implementation of OEMs is a poor understanding of their structure-property 
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relationships. The electrochemical reaction pathways of OEMs are typically 

interpreted based on simplistic molecular models, rather than describing these 

processes at the material level. These molecular-type OEM models are often paired 

with ex situ or operando XRD experiments, which frequently cannot reveal their 

underlying crystal structures and potential phase transformations.27–30 To date, only a 

handful of studies have resolved structures at both charged and discharged (the ion-

containing form) states of specific OEMs.23,31–35 For example, 1,4-benzoquinone (BQ) 

undergoes a phase transition from monoclinic (P21/c) to orthorhombic (P42/ncm) upon 

lithiation or sodiation, forming Li2BQ or Na2BQ,23,36 indicative of conversion-type 

reactions. By contrast, dilithium 2,6-naphthalene dicarboxylate (Li2NDC) retains a 

monoclinic (P21/c) structure upon complete lithiation (Li4NDC),32,33,37 following an 

intercalation reaction. However, distinguishing between specific reaction mechanisms 

remains poorly understood in the OEM literature, mainly because of the lack of 

structural data for the discharged state, unlike the charged state, which is often known. 

 

A comprehensive understanding of OEM structures and their behavior across different 

ion content (i.e., different states of charge) remains crucial for bridging the gap 

between molecular-scale insights and crystalline materials with intrinsic periodicity. In 

general, this knowledge is essential for elucidating the physicochemical processes that 

govern electrochemical behavior, including phase transitions,23 voltage profiles,35 and 

mechanical degradation.34,38 However, accurate identification of the positions of 

mobile ions such as Li+, Na+, K+, Zn2+, and Mg2+, in organic crystalline frameworks, 

remains a significant experimental and computational challenge.27,31,33,34,39–47 This 

challenge arises primarily from the ample intermolecular space (void within the crystal 
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framework) caused by weak intermolecular interactions, which are responsible for 

molecular assembly into organic molecular crystals. This results in numerous possible 

cation arrangements within the organic framework. Therefore, developing 

computational tools that can accurately predict ion positions within the crystalline 

structure of organic materials is essential for making breakthroughs and unlocking 

hidden potential for rational materials design from a crystal-level perspective. While 

such approaches have been established for inorganic electrode materials, 48–51 

predictive search for ion sites in OEMs remains largely confined to the molecular scale 

and,44,52 to the best of our knowledge, has not yet been demonstrated for crystalline 

organic frameworks. 

 

In this paper, we present two complementary computational algorithms and an ion 

insertion workflow for identifying the optimal active and inactive ion insertion sites 

within organic frameworks: (i) The Efficient Location of Ion Insertion Sites from 

Extrema (ELIISE) in electrostatic local potential and charge density, which identifies 

electrostatically stable ion positions by locating local extrema in electrostatic local 

potential and electronic charge density (CD) fields. (ii) The ElectRostatic InsertioN 

(ERIN), which, by following the electrostatic potential, iteratively places ions into 

electrostatically favorable regions of the unit cell until the entire cell volume is sampled. 

(iii) The Simultaneous Ion Insertion and Evaluation (SIIE), which inserts the ions 

simultaneously and evaluates to determine the correct structure. ELIISE and ERIN, in 

conjunction with SIIE, are applied with a library of 16 representative organic structures, 

illustrating their ability to automatically identify candidate ion sites within complex, 

flexible organic frameworks using limited computational resources. These predictions 
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are subsequently refined using agnostic first-principles calculations, resulting in high-

confidence ion positions, which provide crucial insights into ion coordination 

environments and other structural evidence. These predictive workflows establish a 

powerful toolkit for the systematic exploration of electroactive structures and their ion 

transport pathways, elucidating reaction mechanisms and guiding the rational design 

of materials for the development of competitive organic-based electrochemical 

devices, as well as the exploration of soft materials for other energy-storage 

applications. 
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Methods 
 

1. Finding candidate ion insertion sites in organic crystals: ELIISE and ERIN 

Figure 1 shows the identification of candidate ion sites using ELIISE and ERIN, which 

rely on the electronic charge density (CD, or !(#)) and the local electrostatic potential 

%&(#) Eq. 1, and the spherically averaged local potential, ALP(#), of Eq. 2. 

 

*+(,) = 	/!"#$#%%(,) +	/&'(&)(,) Eq. 1 
 

where 1*+,-,..(#) is the Coulomb potential set by !(#), and 1/01/2(#) is the Coulomb 

potential originating from the ionic core of all atoms. From %&(#), the 2%&(#) is defined 

as:  

345(,) =
∫ *+(, + ,3)	74,′	
6!	

9
: 	;	,74

	 Eq. 2 

 

where 18 represents the spherical region within radius #8 that is averaged at each point 

#	, and #3 is a dummy variable over which the averaging occurs. Note, in Eq. 2, 2%&(#) 

is the spherically averaged electrostatic potential at each point in the organic crystal 

framework, with constant radii (#8) set by the user (here, fixed to the empirical covalent 

radii of the atom that is inserted). 

 

Both methodologies rely on an initial organic framework to compute %&(#) and CD. 

The choice of the initial organic framework is trivial when the organic framework of the 

discharged (ion-inserted) structure— i.e., the lattice parameters, the symmetry, and 

the atomic positions— is known. In such cases, only the precise determination of ion 

positions is necessary, as is often the case with lithium; here, ELIISE serves as an 
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appropriate tool.  Conversely, the more prevalent scenario is when only the organic 

framework of the charged (ion-removed) phase is known. Under these circumstances, 

ERIN is recommended, as employing ELLISE may result in unreliable outcomes.  

 

 
 
Figure 1: Workflow and schematic illustration of the ELIISE (left) and ERIN (right) algorithms. 
ELIISE: Process for identifying potential ion sites based on local potential and charge density. ERIN: 
Workflow illustrating the iterative process used to identify potential ion sites based on electrostatic 
stability systematically. 
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The ELIISE method identifies candidate ion sites using both the CD and the spherically 

averaged local potential 2%&(#) , defined in Eq. 2, within the empty (i.e., without any 

mobile species) organic framework from the discharged state.  

 

Following the ELIISE workflow in the left part of Figure 1, the local potential and 

electronic CD are initially computed by performing a first-principles calculation without 

changing the atom positions (or changing the volume or cell shape of the material) of 

the empty organic framework. Subsequently, ELIISE identifies candidate active sites 

in an organic framework by identifying the local maxima and the local minima in the 

2%&(#) the CD fields, respectively. Figure 1 shows a schematic diagram of the local 

minima in CD and local maxima in the 2%&(#), which are used to identify candidate 

sites. We have concluded that a spherical average of the %&(#) provides the best 

predictions in terms of candidate ion sites, as it accounts for the finite size of inserted 

ions. Here, the empirical covalent radii of atoms by Slater53 appear to be a reliable 

option for defining this ion size. When different types of active species are involved in 

ion insertion, we imposed the empirical radius of the smaller atom for spherical 

averaging of the local potential. The candidate sites identified by both the CD and the 

2%&(#) descriptors are combined into a single collection. To avoid repetition of sites, 

spatially close sites are merged by calculating the geometric mean of their 

coordinates, as indicated in Figure 1. The resulting sites are then ordered by their 

electrostatic stability, from the most favorable to the least favorable, as determined by 

the 2%&(#). 
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Large values of 2%&(#)  indicate regions that are electrostatically favorable for 

positively charged ions, typically in the vicinity of more electronegative (negatively 

charged) atoms within the crystal structure. Therefore, local maxima in 2%&(#) 

naturally point to potential cation sites. Similarly, local minima in the CD usually occur 

in voids near more electronegative atoms. It is reasonable to assume that these 

electronegative atoms strongly attract electron density, leading to electron-deficient 

regions nearby, which are likely to form local minima in the charge density. Therefore, 

these minima of CD often align with favorable coordination environments for cations. 

An exception to this trend becomes clear when local minima occur in large structural 

voids, which are common in organic crystals or nanoporous materials. These voids 

may be too far from the organic framework to provide any stabilizing interactions for 

inserted ions. These situations can lead to surprisingly high Coulomb energies. To 

address this potential issue during the site search in both ELIISE and ERIN, we set 

cutoff distance thresholds to exclude regions that are either closer than the specified 

distance (e.g., 1.5 Å) or farther than ~3 Å from atoms in the organic framework. 

 
3. The ElectRostatic InsertioN (ERIN) Method 

In contrast to ELIISE, ERIN only requires the %&(#) (Eq. 1) of the organic framework, 

obtained from first-principles calculations. The ERIN approach in the right part of 

Figure 1 only uses the spherically averaged local potential ALP(#) (Eq. 2) to explore 

electrostatic energy landscapes and systematically generates sparsely spaced 

candidate ion sites in a decreasing order of electrostatic favorability within the given 

unit cell. ERIN identifies and selects the site with the maximum 2%&(#)  value. 

Subsequently, ERIN excludes a spherical region within a user-defined radius, rexclude 

(e.g., 2 Å), around this site from future searches. Then, ERIN repeats the search for 
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the site with the next highest value of 2%&(#) to select as a candidate. This process is 

repeated iteratively until the entire volume of the unit cell is scanned systematically 

and excluded. The site search is performed independently within each symmetry-

distinct region of the unit cell to identify candidate sites in all possible Wyckoff 

positions. 

 

4. Simultaneous Ion Insertion and Evaluation (SIIE) Workflow for Candidate 

Site Insertion 

Once ELIISE or ERIN determines the candidate sites, the next step is to identify the 

optimal combination of sites yielding the expected stoichiometry of the system and 

energetically viable structures. For this purpose, we introduce the Simultaneous Ion 

Insertion and Evaluation (SIIE) workflow, in which ions are introduced simultaneously 

within the organic framework to achieve the desired stoichiometry, as opposed to the 

sequential insertion method, where ions are inserted one at a time.48,54 In the SIIE 

workflow, if the organic framework of the discharged structure is known, its atoms are 

kept fixed during ion insertion, with only inserted ions and decorating hydrogen atoms 

(whose positions are typically unknown from standard XRD experiments) allowed to 

change. Otherwise, if only the organic framework of the charged phase is known, then 

both the ions and the organic framework are allowed to relax completely.  

 

As shown in Figure 2a, SIIE uses the candidate ion insertion sites from the ELIISE or 

ERIN methods discussed in the previous sections as inputs. While ELIISE and ERIN 

provide sets of candidate ion positions, they do not determine the final configuration 

of ions in the discharged structure. In real systems, multiple symmetry-distinct sites 
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may be occupied simultaneously, and therefore, the correct discharged state often 

results from a specific combination of these candidate sites.  

 

Finding the right combination of candidate sites is challenging due to the large number 

of unique possibilities. Note that the number of possible combinations of predicted ion 

sites that produce the target ion content can grow combinatorially, in the range 10 – 

106, which typically makes direct DFT evaluation of all combinations computationally 

infeasible.  

 

To address this challenging task, we incorporate a machine learning interatomic 

potential (MLIP), such as MACE or Orb-v3,55–57 to screen thousands of configurations 

efficiently. Here, we utilize MACE, which enables us to identify and remove high-

energy structures. More details on how MACE and DFT are combined in the SIIE 

workflow are provided later (see Computational Details). 
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Figure 2: Workflow for the Simultaneous Ion Insertion and Evaluation (SIIE) method (a) and its 
application in two organic-based materials. (b) Disodium 1,4-benzoquinone (Na2BQ) and (c) 
Tetrasodium rhodizonate (Na4C6O6). Combining SIIE with ELIISE, the Na-ion positions are located in 
two exemplary electro-active organic materials.36,58 
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Results 
 

Case Studies: Implementing the Suggested Workflows on Example Systems 

To demonstrate the effectiveness of these algorithms, we showcase the application of 

the ELIISE (ERIN) + SIIE workflow to several model compounds. The accuracy of 

ELIISE+SIIE is verified by “rediscovering” the Na-ion sites in two known fully sodiated 

compounds: (i) the disodium 1,4-benzoquinone (P42/ncm, Na2BQ),36 and (ii) the tetra-

sodium rhodizonate with formula Na4C6O6 (C2/m).58 Similarly, starting from the known 

dilithium 2,6-naphthalenedicarboxylate (P21/c, Li2NDC), using ERIN+SIIE, we predict 

Li positions in Li4NDC (tetra-lithium 2,6-naphthalenedicarboxylate),33,59 which contains 

2 additional Li sites per formula unit (f.u.). 

 
Na4C6O6 (C2/m)58 is an oxocarbon-salt-based layered compound; it is a planar 

conjugated ring with six carbonyl oxygens, known to undergo a two-to-four electron 

reduction with Na. To test the ELIISE method, we first remove all Na atoms from 

Na4C6O6 and perform a static DFT calculation, at the experimentally determined 

volume and geometry, to calculate the electronic charge density and local electrostatic 

potential fields and subsequently apply the ELIISE algorithm to find the possible sites 

for Na-ions (as described in Methods Sec. 2). 

 

The ELIISE algorithm yields nine symmetry-distinct Na sites with different multiplicities 

(Table S2). These candidate sites from ELIISE are then “funneled” into the SIIE 

workflow. We examine all possible combinations of sites from these nine symmetry-

distinct candidates that produce the desired Na4C6O6 stoichiometry. This yields only 

59 unique sodium configurations, for which we perform DFT and MACE optimizations 
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to identify the most plausible Na-atom positions. To quantify the prediction accuracy 

of ELIIER+SIIE, we use a metric called the maximum atom displacement error 

(MADE), and defined in Eq. 3:  

 

<3=> = ?@A{|,& − ,&#%9|; 	F ∈ HII	HJKLMN	HOP	LOHJKLMN	QRNJLNQ} Eq. 3 
 

Where #/ is the predicted ion position of the 	T:;	ion, and #/,.<  is the position of the 

corresponding ion from the literature. The predicted and literature ion pairs are 

matched based on the pairing that minimizes the sum of their absolute deviations. 

Thus, MADE (Eq. 3) is the maximum displacement between any predicted ion position 

and its corresponding literature reference, i.e., the actual atom positions reported in 

the literature.58 MADE is defined when the organic framework of the discharged 

structure is known and remains fixed during the optimization of ionic positions. MADE 

measures the accuracy of the predicted sites by indicating how much the ions deviate 

from literature positions. 

 

In practice, we interpret MADE values ≤ ~0.4 Å as indicating correct predictions for all 

ions in the structure, while MADE values ≥ ~0.4 Å suggest that at least one ion site has 

been predicted incorrectly. Among the predicted structures for Na4C6O6, the lowest-

energy structure of Figure 2c displays a MADE of ~0.026 Å, indicating excellent 

agreement with the structure previously reported in the literature.58 

 

In the second example, we investigate the structure of disodium 1,4-benzoquinone, 

Na2BQ36 (Figure 2b), and the fully reduced (sodiated) form of a para-benzoquinone, 
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i.e., BQ. In Na2BQ, the Na atom positions are available from the literature.36 In Figure 

2b, the Na2BQ features a highly open organic framework with large voids, making a 

brute-force search of the potential Na positions computationally expensive. Using 

ELIISE, we identify four symmetrically distinct candidate sites. Applying the SIIE 

workflow, we evaluate all combinations of these four symmetry-distinct ions that 

produce the stoichiometry of Na2BQ. This step yields only three valid configurations, 

which we used for further DFT structural relaxations (keeping the volume and shape 

fixed to the experimental structure of Na2BQ). The most stable structure with the 

lowest DFT total energy singled out with ELIISE+SIIE, shown in Figure 2b, exhibits a 

MADE of ~0.024 Å, demonstrating excellent agreement with the experimental Na 

positions.36 

 

Figure 3: Li4NDC structures: Model 1, Model 2, Model 3, and experimentally refined from single-
crystal XRD.33 Different crystallographic Li sites are shown.  

 

We tested our methods on a third structure, Li4NDC, which shares structural 

similarities to its precursor Li2NDC,60 with 2 Li atoms per molecule. Prior experimental 

studies indicated that the NDC organic framework largely remains unchanged upon 

reaction with Li. Two structural Li arrangements, Model 1 and Model 2 (Figure 3), have 

been proposed for Li4NDC.59 Models 1 and 2 preserve Li-ions in tetrahedral 

coordination sites as observed in Li2NDC60 (shown as Li1 in Figure 3) and introduce 
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new Li positions (shown as Li2 in Figure 3), approaching composition Li4NDC (four Li 

atoms per molecule). 

 

Using ERIN with SIIE workflow, we predict the Li positions in Li4NDC based on the 

organic framework of Li2NDC as input. We recovered Models 1 and 2, described in 

the literature. A close inspection of Model 1 and Model 2 reveals that these two 

structures reported in Ref. 59 are different in the relative orientation of NDC molecules, 

as displayed in Figure 3. However, this striking contrast is not highlighted in Ref. 59 , 

which seems to suggest that Model 1 and Model 2 differ only by Li distribution but 

maintain the same molecular framework. 

 

Along with Models 1 and 2, we identified a different model as the lowest-energy 

structure, as determined by DFT minimization (and MACE), which we named Model 

3. In Model 3, the tetrahedral sites reported for Li2NDC are unoccupied, and all the Li 

atoms assume new crystallographic positions (collectively indicated as Li3 in Figure 

3), which are localized near the inorganic layer of the organic framework, consisting 

of oxygen atoms in NDC. These newly identified Li-atom positions of Model 3 provide 

an electrostatically favorable arrangement of the Li atoms compared to Models 1 and 

2, at the same composition. Quantitatively, DFT total energy comparisons show that 

Model 3 is energetically favored over both Model 1 and Model 2 by ~100 

meV/Li4H6C12O4. and ~440 meV/Li4H6C12O4, respectively. 

 

Indeed, Model 3 is in excellent agreement with a recent study (appeared while drafting 

this paper) that used single-crystal XRD to refine the structure of Li4NDC. 33 Because 
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ERIN uses the organic framework of the charged state as input and optimizes all 

atomic positions, the MADE metric—measuring the prediction error in active species 

positions—is not suitable. Instead, a simple qualitative measure of similarity between 

two structures can be obtained using, for example, StructureMatcher (using default 

parameters) as implemented in Pymatgen.61 Here, StructureMatcher indicated that 

model 3 qualitatively matches the recently reported experimental structure of 

Li4NDC.33  

 

These three case studies, discussed in the previous paragraphs, collectively 

demonstrate the robustness of the ELIISE and ERIN methods when integrated with 

the SIIE workflow in accurately identifying ion positions across various organic 

electrode materials. 

 

Assessing the accuracy of the ELIISE+SIIE approach 

To assess the accuracy of the ELIISE + SIIE approach, we apply it to a diverse set of 

organic electrode materials (16 in total) for which the organic framework and ion 

positions of the crystal structure are known from literature. Using MADE (Eq. 3) as a 

metric for similarity, we evaluate the performance of the ELIISE method with the SIIE 

workflow across 16 organic systems. These structure organic electrode materials, 

such as Li2NDC and Li4NDC (di and tetra lithium 2,6-naphthalene dicarboxylate),60 

Li2BDC and Li4BDC (di and tetra lithium 1,4-benzene dicarboxylate),62 Li2-BPDC 

(dilithium biphenyl dicarboxylate),63 Li2Mg-p-DHT (magnesium(2,5-dilithium-oxy)-

terephthalate),31 Na2BQ (disodium hydroquinone),36 Na2C6O6 (disodium 

rhodizonate),64 and Na4C6O6 (tetra sodium rhodizonate),58 as well as select structures 
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(see Table S1) obtained from crystallographic databases, the Cambridge 

Crystallographic Data Centre (CCDC)65 and the Inorganic Crystal Structure Database 

(ICSD).66 

 

Figure 4: Accuracy of the predicted active ion positions with the proposed SIIE workflow and 
ELIISE. MADE (Eq. 3) values determined after optimization of ionic positions with (a) first-principles 
DFT and (b) the machine learned potential MACE. Stars indicate the most stable (lowest total energy) 
ion arrangements in each organic structure, and crosses indicate the thermodynamically unfavorable 
(high energy) structures. Details of reference structures reported in the literature are in Table S1. 

 
As shown in Figure 4a, the lowest-energy structure identified through the SIIE 

workflow using ELIISE correctly reproduces the known ion positions in all tested 

cases, as measured by MADE, whose value is always ≤ 0.4 Å in all the cases 

considered. Furthermore, Figure 4b demonstrates that using a pre-trained machine 

learning interatomic potential (MLIP), specifically MACE (only used for optimizing ion 

positions), yields the correct prediction of ion positions, with MADE values consistently 

lower than 0.4 Å. This suggests that DFT-level structural relaxation may not be strictly 

necessary for determining the general location of inserted ions, leading to a substantial 

reduction in computational cost. Figure S1 presents a similar assessment, but with 

predictions generated using ERIN+SIIE instead of ELIISE+SIIE, and only MACE was 

employed for optimizing ion positions. The MADE values in Figure S1 show that 
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ERIN+SIIE also accurately predicted the positions of all inserted ion sites for all 16 

tested organic systems. 

Discussion 

 
Predicting ion positions in “soft” crystalline materials, such as organic electrode 

materials, remains a significant challenge due to the combination of large free 

volumes, weak intermolecular forces, and the dynamic nature of ion coordination. In 

this paper, we have developed two new methodologies, ELIISE and ERIN, along with 

an ion insertion workflow, SIIE, designed to identify ion insertion sites in organic 

structures. These include metal atoms, such as Na, Zn, and Mg, as well as light 

elements, for example, Li. Here, we discuss the pros and cons of implementing the 

ELIISE and ERIN algorithms for resolving unknown ion positions in crystal structures, 

where traditional structural techniques fail. 

 

ELIISE uses both the electronic charge density (CD) and the local electrostatic 

potential %&(#)  derived from first-principles calculations of the empty organic 

framework. In combination, the CD and the %&(#)  are used to find candidate 

crystallographic sites for light elements in these materials. However, since the CD and 

the %&(#) are intrinsically linked (as the latter is derived from atomic positions and the 

electronic charge density distribution), the independent use of the CD and the %&(#) 

often arrives at similar predictions for candidate ion sites. Since ELIISE directly 

identifies coordinating environments—regions surrounded by electronegative atoms 

of the organic frameworks, ELIISE appears most effective for systems where the 

organic framework structure of the discharged (ion-inserted) phase is known. This 
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signifies that prior experiments determining the space group, lattice constants, and 

atom positions of the organic framework (excluding the mobile ions) must be available. 

In some sense, this limits the capabilities of the ELIISE strategy. For example, if only 

the charged-phase structure of an organic system is available and significant structural 

changes and/or phase transitions are expected upon electrochemical reactions, using 

ELIISE may yield unreliable results.  

 

To address the apparent limitation of ELIISE, we have developed an alternative 

method called ERIN. ERIN generates a sparse set of points that cover all possible 

Wyckoff sites, ranked from the electrostatically lowest-energy sites to the highest-

energy sites. Therefore, ERIN should be applied when the structure of the organic 

framework, whose ion-inserted/discharged phases remain unknown. In such cases, 

the charged (empty) structure of the materials can be used as a starting point, 

assuming the unit cell of the pristine organic crystal shape and most of the symmetry 

remains unchanged or structural modifications occur gradually (for example, a 

displacive phase transition) upon reaction with Li (or sodium). 

 

ELIISE identifies the stationary sites, i.e., the local minima, by populating the energy 

landscape; these sites are expected to be stationary points for ions in the potential 

created by the anion framework. In contrast, in ERIN, the identified sites are not 

necessarily located at energy minima –non-stationary sites, such as saddle points, on 

the potential energy surface, and may be mobile during structural relaxation. These 

non-stationary sites can perturb the organic framework during their relaxation and 
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promote structural changes that lead the organic framework toward a more stable 

discharged structure. 

 

Even if the discharge phase does not involve phase transitions, the specific 

coordination environments and lattice parameters required to host mobile metal atoms 

in the discharged organic framework may not be available in the charged organic 

framework. ERIN systematic electrostatic screening helps identify plausible insertion 

sites that would be hard to locate with ELIISE alone. Note, however, that ERIN predicts 

more candidate sites than ELIISE, resulting in a greater number of possible ion-

vacancy arrangements to evaluate in the SIIE workflow. 

 

Our study has focused on identifying plausible sites for cation insertion; however, with 

suitable modifications, these algorithms can also be used to locate anion positions in 

a crystal structure. For example, in the case of the ELIISE method, local minima in the 

2%&(#) should be used instead of local maxima. The approach remains the same 

when using CD. In ERIN, instead of selecting the maximum in the ALP(r)  as a 

candidate site, the minimum in the ALP(r) should be chosen. 

 

At its core, ERIN uses the Coulomb electrostatic potential to model the energy 

landscape and identify sites generated from electronic charge densities obtained from 

first-principles calculations. Other methods, such as machine learning interatomic 

potentials 57,67,68 or Bond Valence Sums69 appear viable for modeling and developing 

the potential energy landscape for ion insertion. 
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In general, when testing the ELIISE and ERIN algorithms on 16 previously known 

structures (Figure 4 and Figure S1), we demonstrated how these algorithms, in 

combination with the SIIE workflow, offer a reliable and systematic approach for 

accurately predicting unknown ion positions in organic frameworks. 

 

Another important aspect is the integration of machine learning interatomic potentials 

(MLIPs), such as MACE, into the SIIE workflow. In principle, ERIN and ELIISE are 

applicable together with any foundational MLIP model, including ME3GNET, 

CHGNET, and ORB-3, among others.57,67,68 This hybrid MLIP–DFT approach appears 

to be viable, significantly reducing the computational burden of exploring vast 

combinatorial site occupancies while providing sufficient accuracy in predicting ion 

positions. Furthermore, the ability of MLIPs to screen thousands of candidate 

configurations before subsequent, more accurate but computationally intensive 

refinements using first-principles calculations highlights a scalable pathway for high-

throughput exploration of ion-insertion chemistries in soft systems, such as organic 

crystals, porous systems, metal-organic frameworks, and larger molecules with 

biological relevance.  

 

In this vein, we have tested MACE predictions against those obtained by DFT on the 

same systems of Figure 4. We have observed that when the organic framework is 

kept fixed at the known discharged structure, identifying the structure with the lowest 

energy and correct ion arrangements using (MADE) prediction error within a tolerable 

range of 0.4 does not require DFT; foundational MLIPs without re-training appear 

suited for this task. Here, we have only tested MACE.55,56  
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A limitation exists within the SIIE workflow when the number of possible ion 

combinations generated is in the order of 104 to 106, as this can still require significant 

computational resources to evaluate total energies across all configurations, even with 

MLIP such as MACE. In this context, we had relied on the fact that candidate sites are 

ranked in decreasing order of electrostatic favorability, as indicated by the averaged 

local potential. Unfavorable sites are systematically excluded during the generation of 

ion combinations; this removal process continues until the number of valid ion 

combinations falls below the preset threshold (~103).  

 

Aside from ELIISE and ERIN, the simultaneous insertion of ions, implemented in the 

SIIE workflow, is also essential for accurately finding discharged structures, as 

illustrated by the case study of Li4NDC. In Li4NDC, we proposed Model 3, which yields 

the lowest DFT total energy (Figure 3), and is lower than that of the previously 

proposed Models 1 and 2.59 Before this work,51 other strategies, such as sequential 

insertion methods, have been proposed.48,54 In the sequential approach, a new model 

is created by inserting an atom in a new position in the unit cell, and the structure 

positions are optimized. This procedure is performed multiple times until the expected 

stoichiometry is achieved, in the hope of finding a representative global minimum. The 

sequential approach can lead to incorrect selection of stable candidates because ions 

may become trapped in local minima of the potential energy surface. 

 

In the case of Li4NDC, determining the optimal ion positions was uncomplicated 

because the organic structure remained essentially unchanged during lithiation. 
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However, this is not the case for most systems. For example, when Li2BDC is lithiated, 

forming Li4BDC, a symmetry reduction is observed.33 It involves doubling the unit cell 

along the stacking direction of the organic layers, accompanied by changes in the 

organic framework.33 Consequently, attempting to predict ion positions in Li4BDC by 

starting directly from the Li2BDC structure would produce an inaccurate model.  

 

These cases highlight a broader challenge: it is often unclear whether a significant 

phase transition occurs during the lithiation process. When this uncertainty arises, a 

practical approach is first to predict ion positions based on the charged structure (i.e., 

the host in its oxidized or delithiated form). The resulting model can then be compared 

with experimental data such as XRD or ND; if the simulated patterns show similarity 

to the experimental patterns, the predicted structure can serve as a solid starting point 

for refinement. 

 

However, if the comparison shows significant differences, it becomes necessary to 

explore alternative structural hypotheses. In such cases, one must generate and 

assess a set of candidate organic framework motifs to serve as initial models in the 

ERIN+SIIE workflow. Developing systematic methods for constructing and testing 

these organic framework variations appears crucial for reliably understanding the 

structural complexity of ion insertion in molecular crystals. 

 

Besides XRD and ND for determining the structures of organic materials, solid-state 

nuclear magnetic resonance (ss-NMR) crystallography is another valuable tool that 

offers structural insights.70,71 The nascent application of ss-NMR in conjunction with 
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first-principles calculations, termed as NMR crystallography, has been used to 

establish the structure of functional materials.72 

Conclusions 

In summary, we have developed a computational framework for accurately predicting 

ion positions in organic materials, utilizing DFT-derived electrostatic and charge 

density fields with the ELIISE and ERIN algorithms and the SIIE workflow.  

Through case studies of Na4C6O6, Na2BQ, and Li4NDC, we showed that ELIISE and 

ERIN methodologies can reproduce ion positions known from the literature with sub-

angstrom accuracy. Additionally, we demonstrate that these methodologies can 

uncover new, energetically favorable structural models that can improve our 

understanding of experimental observations. 

We have demonstrated that computationally intensive DFT predictions are not a strong 

requirement for accurately identifying ion positions, and we have shown that 

foundational machine-learned potentials provide sufficient accuracy for large-scale 

screening tasks.  

Our results demonstrate that ELIISE and ERIN, combined with SIIE, are powerful and 

can significantly improve, if not augment, the limits of traditional structural 

characterization techniques. The framework proposed in this paper offers a pathway 

toward deeper mechanistic insights and the rational design of organic materials for 

next-generation functional materials. Moreover, MLIPs can efficiently screen 

thousands of candidate configurations initially, before performing more precise but 

computationally expensive refinements with first-principles methods. This approach 
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offers a scalable pathway for high-throughput exploration of ion-insertion chemistries 

in soft systems, including organic crystals, porous materials, metal-organic 

frameworks, and larger biologically relevant molecules. 
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Computational Details 
 

All first-principles calculations presented in this work were performed using the density 

functional theory (DFT) formalism, as implemented in the Vienna Ab initio Simulation 

Package (VASP).73–75 The PAW potentials describe the core electrons. Perdew, 

Burke, and Ernzerhof (PBE)76 was used to approximate the unknown DFT exchange 

and correlation XC functional. To account for Van der Waals interactions, the empirical 

D3 method proposed by Grimme and collaborators, with Becke-Johnson (BJ) 

damping, was used.77,78 

 

VASP inputs prepared for geometry optimization and energy calculations closely 

followed the MITRelaxSet79 as available in pymatgen.61 The kinetic energy cutoff for 

the plane waves was set to 520 eV, and the total energy was converged to 10−5 eV 

per cell. Geometries (coordinates, volumes, and cell shapes) were considered 

converged when the forces on all atoms are lower than 0.05 eV/Å. A Γ-centered 

Monkhorst−Pack80 grid with a density of 25 k-points per Å=> for all systems. With these 

DFT settings, local potentials are computed as the sum of Ewald and Hartree parts, 

excluding the Exchange and Correlation (XC) contributions.  

 

To reduce the number of structures for DFT optimization, a MACE-MP-0 machine-

learned foundational model, based on MACE,55,56 with PFP-based PyTorch 

implementation of DFT-D3,77,78,81 was used to evaluate static total energy and/or 

optimize ion positions. Structural relaxations are carried out until the forces are 

converged below 0.05 eV/Å. 
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When MACE is implemented in the SIIE workflow is used as follows:  

1. Generate all possible ion combinations. If the number of combinations 

exceeds a preset limit (~103), they can be reduced systematically by 

removing electrostatically unfavorable sites in ELIISE or ERIN before 

generating possible ion combinations. 

2. Use MACE to evaluate all the generated combinations. 

3. Select approximately ~102 of the lowest-energy candidate structures for 

optimization of ion positions using MACE. 

4. From these structures, we choose approximately 10 unique lowest-energy 

structures for further accurate DFT optimization of the atomic positions. 

 

This hybrid approach, which combines the computational speed of MACE-based 

MLIPs with the accuracy of DFT, enables us to successfully identify the correct atomic 

configurations in organic frameworks with substantial structural complexity. 
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