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The contrast between monovalent  
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BACKGROUND: Batteries are an integral component of an electrified 
modern society, as they power consumer electronics and electric 
vehicles and help to integrate intermittent renewable energy into smart 
grids. With performance requirements constantly increasing, there is 
much demand for high–energy density and low-cost batteries, beyond 
the capabilities of widely commercialized lithium (Li)–ion batteries. For 
a battery anode, Li metal is considered to be one of the most attractive 
choices because of its high theoretical specific capacity and negative 
electrochemical potential. Other promising anode candidates include 
sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and 
aluminum (Al) metals, as their crustal abundance is higher than that of 
Li. Furthermore, all these monovalent (Li, Na, K) and multivalent (Mg, 
Ca, Al) metal anodes are indispensable for next-generation high-energy, 
low-cost metal-sulfur and metal-air batteries.

ADVANCES: After decades of research and development, the practical 
applications of the monovalent and multivalent metal anodes in 
nonaqueous rechargeable batteries are still plagued by common 
problems and specific challenges. (i) Irregular deposition is a common 
occurrence during electrochemical plating of Li, Na, K, Mg, Ca, and Al 
metals; however, the deposition morphologies are distinct for different 
metals. Specifically, monovalent metals easily grow into whisker-like, 
moss-like, and tree-like dendrites, whereas multivalent metals prefer 
deposition morphologies such as interconnected platelets and random 
fibers or spheres. There are also some reports of spherical dendrite 
growth for monovalent anodes and tree-like growth for multivalent 
anodes. (ii) Owing to their negative electrochemical potential, the 
considered metal anodes can readily react with electrolyte components 
such as solvents and salts to produce a heterogeneous interface layer, 
comprising both organics and inorganics. In monovalent batteries, Li+, 
Na+, and K+ cations are mostly surrounded by solvent molecules, and the 
as-formed solvent-dominated solvation structure leads to the production 
of organic-rich solid-electrolyte interphases (SEIs) on Li, Na, and K 
anodes, which permit the facile conduction of their respective ions. 
Conversely, the multivalent nature of Mg2+, Ca2+, and Al3+ cations not 
only induces a strong tendency to form anion-participated solvation 
structure in conventional nonaqueous electrolytes but also tends to form 
inorganic-rich SEI layers. This makes it more difficult for multivalent 
cations with high charge density to diffuse across the nanointerface 
between the electrolyte and their corresponding metal anodes.

OUTLOOK: With a comprehensive understanding of the commonalities 
and differences between the electrochemical characteristics of 
monovalent and multivalent metal anodes, some general design 
principles and universal trends for these metal anodes emerge. (i) The 
desired deposition morphology for reversible metal cycling should 
comprise homogeneous and closely packed crystals with a specific 
crystallographic orientation, for example, (110) for Li, Na, and K; (002) 
for Mg; and (111) for Ca and Al. (ii) A favorable SEI usually requires 
similar homogeneous structures (e.g., multilayer and monolithic 
structures) yet different chemical compositions (e.g., a fluorinated 

inorganic-rich SEI for Li, Na, and K versus a hydrogenated organic-rich 
SEI for Mg and Ca) to achieve some universal merits of high ion 
conductivity, electronic insulation, (electro)chemical stability, and 
mechanically rigid-flexible synergy. (iii) Smart electrolyte design 
strategies are required to achieve desired deposition morphology and 
SEI chemistries, for example, (locally) high salt concentration and 
weakly solvating electrolytes for monovalent systems versus strongly 
solvating and weakly ion-paring electrolytes for multivalent systems. 
The successful commercialization of these metal anode-based battery 
technologies further demands leveraging intrinsic advantages for 
specific applications, for example, high-energy Li-metal batteries for 
long-range electric vehicles, cost-effective Na- and K-metal batteries for 
large-scale energy storage, and thermally resilient Mg-, Ca-, and 
Al-metal batteries for extreme-environment applications. 
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Electrochemical behavior of monovalent and multivalent metal anodes. In the 
monovalent battery (left), cations tend to coordinate with solvent molecules, forming a 
solvent-dominated electrolyte solvation structure that is easily reduced to form an 
organic-rich, ion-conducting interphase. In the multivalent battery (right), the stronger 
Coulombic force of multivalent cations toward anions leads to an anion-participated 
electrolyte solvation structure, the decomposition of which induces the formation of 
inorganic-rich, ion-insulating interphases. Furthermore, unlike monovalent metals, which 
easily grow into whisker-like, moss-like, and tree-like dendrites, multivalent metals prefer 
deposition morphologies such as interconnected platelets and random fibers or spheres.
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Monovalent (lithium, sodium, potassium) and multivalent 
(magnesium, calcium, aluminum) metal anodes are promising 
alternatives to graphite anodes for overcoming the performance 
limitations of lithium-ion batteries. In this Review, we compare 
and contrast their electrochemical behaviors in nonaqueous 
electrolytes by discussing their common challenges of irregular 
metal deposition and unstable solid electrolyte interphases 
(SEIs), as well as their differences, which are due to dissimilar 
surface energies and cation charge densities. General design 
strategies for electrode, electrolyte, and interphase are 
proposed to enable horizontally deposited metals with 
preferred crystallographic orientations and stable SEIs with 
distinct chemical compositions yet similar structural 
homogeneity. Finally, we assess the specific advantages and 
unresolved challenges of each system, providing cross-
disciplinary insights to advance high-energy and low-cost 
metal-anode batteries for next-generation energy storage.

Since their commercialization in 1991, lithium (Li)–ion batteries have 
revolutionized the fields of communication and transportation, leading 
modern society into a wireless and sustainable future (1, 2). However, 
after more than 30 years of research and development, state-of-the-art 
Li-ion batteries using conventional graphite anodes (with a theoretical 
specific capacity of ~372 mA·hour g−1) are approaching their energy den-
sity ceiling of ~300 W·hour kg−1 (3, 4). To meet the ever-increasing 
demands for long-range electric vehicles and large-scale energy storage, 
Li-metal batteries are beginning to revive because of the large theoreti-
cal specific capacity (3860 mA·hour g−1) and negative redox potential 
(−3.04 V versus standard hydrogen electrode) of Li-metal anodes 
(5, 6). The integration of Li-metal anodes and Li-rich transition metal 
oxide (Li-TMO) cathodes has recently enabled ampere hour–scale pouch-
type Li-metal batteries with a cell-level energy density of ~710 W·hour kg−1 
(7). Transition to Li-S and Li-O2 batteries further boosts the energy 
density to more than 750 W·hour kg−1 (8) and 860 W·hour kg−1 (9), re
spectively, which can potentially enable electric vehicle ranges exceed-
ing 500 km.

At the same time, concerns over the limited reserves (<0.002 wt % 
in Earth’s crust) of Li resources have driven extensive efforts toward 
developing alternative batteries based on Earth-abundant (>2.0 wt %) 
metal anodes, including sodium (Na), potassium (K), magnesium (Mg), 
calcium (Ca), and aluminum (Al) (10–12). Similar to Li, these post-Li 
metals are prime anode candidates for high–energy density batteries 

because they can offer the highest theoretical specific capacities for 
each battery type and permit the use of high-energy metal-free cath-
ode materials, such as chalcogens, halogens, and gases (13, 14). Among 
monovalent and multivalent metals, Mg (3833 mA·hour cm−3), Ca 
(2073 mA·hour cm−3), and Al (8046 mA·hour cm−3) possess higher 
theoretical volumetric capacities than Li (2062 mA·hour cm−3), Na 
(1128 mA·hour cm−3), and K (591 mA·hour cm−3) owing to multielec-
tron transfer per metal cation (10, 12). The higher melting points 
(>600°C) of Mg, Ca, and Al compared with those of Li, Na, and K 
(<200°C) further make multivalent metal batteries attractive in ap-
plications that require compact designs in limited spaces and extreme 
operation at high temperatures (13, 14).

After decades of research and development, the field of monovalent 
and multivalent metal anodes has accumulated impressive knowledge 
about their electrochemical behaviors in nonaqueous electrolytes. This 
Review aims to compare and contrast their electrochemical common-
alities and differences, in terms of metal deposition behaviors, cation 
solvation structures, and associated electrode-electrolyte interphases. 
Our main objective is to summarize our present understanding of 
monovalent and multivalent battery chemistries and provide insights 
into specific design principles and universal development trends for 
nonaqueous rechargeable Li-, Na-, K-, Mg-, Ca-, and Al-metal batteries.

Comparison of challenges for monovalent and multivalent 
metal anodes
The practical use of monovalent and multivalent metal anodes in re-
chargeable batteries has long been impeded by two common issues 
(Fig. 1A). The first issue is irregular deposition and dissolution of metal 
anodes. In a working battery, all monovalent and multivalent cations, 
irrespective of their chemistry, have a strong tendency to be electro-
chemically reduced and deposited on the anode surface in irregular, 
fractal, and even dendritic morphologies during the discharge process 
(15, 16). Meanwhile, inhomogeneous electrochemical dissolution of a 
metal anode during the charge process generates porous pits and 
electronically isolated “dead” metal, causing severe capacity loss and 
safety hazards (17, 18). Another common issue is the high chemical 
reactivity of metal anodes. The highly negative electrochemical poten-
tial of metal anodes (Fig. 1B) resides far beyond the thermodynamic 
stability window of conventional organic electrolytes, as marked by 
the lowest unoccupied molecular orbitals, driving spontaneous reduc-
tion of electrolyte components to form a solid electrolyte interphase 
(SEI) layer (12, 19). During repeated plating and stripping, mechanical 
stress from volume fluctuations fractures these typically heteroge-
neous and fragile SEIs. Subsequent exposure of fresh metal triggers 
perpetual SEI formation through parasitic reactions, accelerating ac-
tive metal corrosion, gas evolution, and electrolyte depletion (3). This 
cascade ultimately degrades Coulombic efficiency (CE) and shortens 
cycle life (3).

Beyond their shared commonalities, fundamental differences ex-
ist between monovalent and multivalent battery (electro)chemistries, 
which stem from the distinctive properties of the respective metal 
anodes and their coupled charge carriers. First, dendrite susceptibility 
varies with crystal structure. For example, hexagonal close-packed Mg 
and face-centered cubic Ca and Al metals exhibit higher surface ener-
gies at preferred crystallographic orientations than body-centered 
cubic Li, Na, and K metals, resulting in a generally lower tendency for 
dendrite formation in multivalent metal batteries (Fig. 1C) (20). Second, 
because of their high charge densities (Fig. 1D), multivalent cations 
typically exert large binding energies and strong Coulombic interac-
tions with salt anions and aprotic solvents, which create substantial 
kinetic barriers to solvated cation migration, cation desolvation, charge 
transfer, and solid-state diffusion through SEIs (19, 21). Consequently, 
multivalent systems suffer from high overpotentials during plating 
and stripping, which is in stark contrast to monovalent analogs, where 
SEIs usually enable kinetically efficient cation transport.
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Metal electrodeposition behaviors
Irregular deposition is a phenomenon inherent to many metal elec-
troplating processes. For Li-, Na-, and K-metal anodes, irregular mor-
phologies, such as whisker-like dendrites, moss-like dendrites, tree-like 
dendrites, and random spheres (Fig. 2, A to D), have been widely ob-
served in conventional ether or ester-based electrolytes under moderate 
conditions (15, 22, 23). Although Mg, Ca, and Al metals are predicted 
to be nondendritic anode materials, they do electroplate into detri-
mental morphologies such as interconnected platelets, random fibers, 
spherical aggregates, and tree-like dendrites in some unconventional 
nonaqueous electrolytes or under extreme conditions (Fig. 2, C to F) 
(24–27). Several theoretical models have been proposed to explain the 
metal electrodeposition behavior. For example, Sand’s time model and 
“space-charge” theory link the growth of dendrite with the distribu-
tion of ionic concentration field and electric field at the electrode inter-
face, thus explaining the similar tree-like dendrite deposition behavior 
when the applied current exceeds the limiting value (Jlim) (15, 28). 
Moreover, Marcus theory predicts that solvent reorganization energy 
(λ) is larger and exchange current density (j0) is smaller when the 
binding strength of the solvent to cations is stronger, which explains 
why Mg does not form whisker and mossy morphologies, whereas 
Li does (19, 29, 30). Nevertheless, these models and theories are 
not sufficient in apprehending the dynamic and complicated metal 
nucleation-growth-dissolution processes in reality, as none of them can 

fully capture the spectra of environments, including deposition substrates 
(e.g., crystallographic orientations, grain boundaries, natural oxidation 
films) (18, 31, 32), electroplate conditions (e.g., electrolyte formulations, 
current densities, deposition capacities) (33–35), and external fields (e.g., 
stress, temperature, magnetic field, gravity) (24, 27, 36). Therefore, it 
is important to map the electrodeposition regimes of monovalent 
and multivalent metals and their evolutionary trends in realistic elec-
trochemical environments.

Because fast charging is indispensable for next-generation batteries, 
many efforts have been devoted to clarifying the relationship between 
metal deposition morphology and applied current density. At a low 
current of 0.1 mA cm−2, cryogenic–electron microscopy (cryo-EM) ob-
servations have revealed that most of the deposited Li exhibits a sheet-
like, amorphous morphology in a commercial ester-based electrolyte 
(37). This glassy growth pattern is not limited to Li but has also been 
observed in other plating metals such as Na, K, and Mg. As the current 
increases to 0.5 mA cm−2 and further to 2.5 mA cm−2, the amorphous 
Li structure changes to a more crystalline and whisker-like structure, 
indicating that the disorder (amorphous)–order (crystalline) phase 
transition could be the origin of dendrite growth. However, another 
study using cryo-EM observed crystalline whisker-like Li deposition 
at all deposition currents ranging from 0.1 to 9 mA cm−2 in a similar 
ester-based electrolyte (38). These contrasting observations have 
prompted further investigation into the relationship between the 

Fig. 1. Comparison of challenges for monovalent and multivalent metal anodes. (A) Schematic showing the challenges for monovalent and multivalent metal anodes in 
conventional nonaqueous electrolytes, including uncontrolled growth of dendrites, spontaneous decomposition of electrolyte solvation structure, and subsequent formation of a 
structurally inhomogeneous and compositionally unoptimized SEI. During repeated plating and stripping, the organic and inorganic SEI components will dissolve in the electrolytes, 
and the huge volume change will cause SEI cracking and trigger the formation of electrochemically isolated “dead” metal. Meanwhile, the growth of metallic dendrites can 
proliferate in the interelectrode space to bridge the electrodes, giving rise to an early short-circuit cell failure in a working battery. These challenges are highly related to the intrinsic 
properties of monovalent and multivalent metal anodes and their coupled charge carriers, including (B) redox potential, (C) surface energy, and (D) charge density. V, voltage;  
SHE, standard hydrogen electrode. [Data obtained from (10, 20)]
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crystallinity of Li nuclei and the growth of Li whiskers (Fig. 2A). As fur
ther observed by in situ optical microscopy, the initially formed Li in 
a wide range of currents (~1 to 7 mA cm−2) is microscopically whisker-
like, whereas its macroscopic morphology is actually mossy (Fig. 2B), 
which resembles typical reaction-limited root growth (39). The chron-
ological imaging further captured a transition from initial mosses to 
tree-like dendrites (Fig. 2C) with a self-amplifying tip growth model 
when the applied current exceeded the Jlim (2.61 mA cm−2) and plating 
time reached the Sand’s time (about 2700 s) (39). Nevertheless, the 
ion-transport limitations alone are insufficient to explain the detri-
mental Li morphology at relatively high currents (1 to 10 mA cm−2), 
as it is also influenced by the SEI formed at the Li-electrolyte interface 
(35). A more recent study further decoupled Li deposition from the 
SEI influence using an ultramicroelectrode geometry and observed 
that, independent of electrolyte chemistry and current collector, the 
distinct Li morphologies all transition to a well-defined (110)-faceted 
polyhedron at ultrahigh currents up to 1000 mA cm−2 (22). These 
studies challenge our previous understanding of Li deposition behav-
ior and highlight the critical interplay between SEI formation and the 
metal growth mechanism.

Although metallic Li can endure high rates of discharging and 
charging (>20 mA cm−2), Na-metal anode exhibits limited reversibility 
when the current density exceeds 2 mA cm−2 in analogous commonly 
used ether-based electrolytes (40). The challenges of fast charging in 
Na electrodes are exacerbated in conventional ester-based electrolytes, 
where irregularly isolated hemispherical Na deposits (Fig. 2D) lead 
to short circuits in symmetrical cells after just 5 min at 1 mA cm−2 
(23). The short-circuit failure primarily results from the delaminated, 
irregular Na deposits and fragments from fragile SEIs and, more 
importantly, their accumulation in the pores of the polymer separa-
tor (23, 41). This differs from the Li-metal case, where the short-
circuit failure is mainly caused by the separator being punctured by 
Li dendrites. These distinctions primarily arise from the mechani-
cally softer nature of both bulk metallic Na and dendrites as well as 
the higher solubility of Na-SEI components as compared with their Li 

counterparts (42, 43). However, the soft characteristics 
of Na can be somewhat advantageous, as the growth 
and penetration of Na dendrites can be readily miti-
gated through optimizing battery stack pressure (42, 44), 
which has been used in Li-based batteries (36, 45).

Owing to the combined effects of the higher reactivity 
and lower mechanical modulus of K compared with Li 
and Na, it is observed that dendrite growth in a K-metal 
anode causes quicker battery failure (23). Experimentally, 
irregularly isolated hemispherical K deposition (Fig. 2D) 
is often found even at a low current of 0.01 mA cm−2 (46). 
Intriguingly, increasing the current density to 2 mA cm−2 
could induce nondendritic and smooth electroplating, 
indicating that K dendrites could be healed in situ. This 
high current density–driven dendrite self-healing phe-
nomenon was first observed in Li batteries, where the 
internal self-heating promoted self-surface diffusion of 
Li atoms and self-healing of Li dendrites at current den-
sities above 9 mA cm−2 (47). The lower threshold cur-
rent density at which K dendrites heal compared with 
Li dendrites can be attributed to the markedly lower 
energy barriers for self-surface diffusion in K metal 
(46, 47). These results showcase that customizing battery 
operating protocols (e.g., controlled high-current pulses) 
is effective for smoothing dendritic features and im-
proving the safety of fast-charging metal batteries (47).

During galvanostatic Mg electrodeposition, tree-like 
Mg dendrites similar to those in Li-metal batteries were 
formed in Grignard solutions at 0.921 mA cm−2 (48), 
whereas “all phenyl” complex electrolytes enabled dense 

and uniform Mg deposition across 1 to 5 mA cm−2, with dendritic 
protrusions only emerging at 10 mA cm−2 (34). Similar to Mg, the elec-
troplating morphologies of Ca also underwent a transition from non-
dendritic globules (Fig. 2D) to tree-like dendrites (Fig. 2C) in a Ca(BH4)2/
tetrahydrofuran (THF) electrolyte at 20 mA cm−2 (49). Combined theo-
retical calculations, digital modeling, and experimental investigations 
suggest that the differences in cation desolvation-induced exchange 
current and deposition substrate properties (e.g., metallophilicity, sur-
face energy, metal-support interaction) are responsible for different 
Jlim at which irregular metal deposition occurs (16, 34, 50). It is note-
worthy that despite being subjected to rigorous current conditions, a 
dense and flat plating layer was formed on Mg and Ca electrodes be-
fore the fractal dendrites began to grow. Put another way, there is a 
diffusion-controlled buffer zone during Mg and Ca deposition, that is, 
the applied current exceeds the Jlim but the plating duration is less than 
the Sand’s time (28, 49). This deposition behavior suggests the poten-
tial to safely achieve fast-charging batteries by controlling the current 
versus capacity, thereby enhancing the utilization of divalent metal anodes 
and beyond in such applications.

In Al-metal batteries, various detrimental morphologies, such as 
tree-like dendrites, pebble stacks, interconnected flakes, and random 
fibers (Fig. 2, C to F), have been observed in similar AlCl3-based ionic 
liquid electrolytes at currents around 10 mA cm−2 (16, 27). As further 
monitored by in situ optical microscopy, the native surface film of 
Al2O3 was dissolved in the ionic liquid electrolyte, accompanied by the 
formation of a SEI with Al-Cl– and Al-O–containing species on the 
anode surface, before protrusions of dendritic Al growth (51). A re-
cently developed molten-salt electrolyte composed of NaCl-KCl-AlCl3 
was observed to enable fast-charging (650 mA cm−2) Al-chalcogen 
batteries resistant to dendritic shorting at an elevated temperature 
(e.g., 110°C) (13). The insights gained from high working temperatures 
and advanced electrolyte design provide a perspective for the further 
development of fast-charging multivalent batteries.

With a more coherent understanding of metal deposition behavior, some 
effective strategies for dendrite inhibition have been independently 

Fig. 2. Electroplating morphologies of monovalent and multivalent metals. (A to F) Irregular 
deposition morphologies include (A) whisker-like dendrites, (B) moss-like dendrites, (C) tree-like 
dendrites, (D) random spheres, (E) interconnected platelets, and (F) random fibers, the first four of 
which are observed on monovalent metals and the last four of which are observed on multivalent metals. 
(G to I) Regulated deposition morphologies include (G) (110) textured crystals for Li, Na, and K metals; 
(H) (002) textured crystals for Mg metal; and (I) (111) textured crystals for Ca and Al metals.
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established in different battery systems. In particular, it has been found 
that some textured substrates can guide reversible epitaxial electro-
deposition of metals along the most close-packed crystal plane, that is, 
(110) for body-centered cubic metals (Li, Na, and K) (52–54), (002) for 
hexagonal close-packed metals (Mg and Zn) (55, 56), and (111) for face-
centered cubic metals (Ca and Al) (31). Graphene, with a low lattice 
mismatch for hexagonal close-packed Zn, could effectively lock Zn 
electrodeposits into a particular crystallographic orientation, that is, (002) 
(56). Based on the lattice matching concept, many substrate materials 
have been explored for epitaxial electrodeposition of various anode 
metals (Fig. 2, G to I), for example, single-crystal copper (Cu) foils for 
(110)-textured Li (57), Ti3C2 MXene films for (002)-textured Mg (58), 
and gold (Au) nanosheets for (111)-textured Al (56). Substantial research 
progress has also been made in the development of bulk textured metal 
foils, including (110)-textured Li, (002)-textured Mg, and (111)-textured 
Al (59–61), and texture exposure of unconventional (100)Li, (100)Na, 
and (220)Al planes (62–64). These crystal plane–customized metal 
anodes are capable of enabling sequential pitless stripping and crack-free 
plating processes compared with nontexture metal anodes, thereby 
successfully extending the cycle life of batteries in both liquid and solid 
electrolytes. Although there should be close interplay among the crys-
talline planes, surface reactivity, SEI formation, deposition and dis-
solution kinetics, and morphologies, which may also rely on the 
electrochemically active metal species, the community’s understanding 
remains in infancy.

Cation solvation structures
It is well known that the plating and stripping behavior of metal bat-
tery anodes strongly depends on the electrolyte, particularly its solva-
tion structure, as this not only determines the transport of metal 
cations but also affects the formation of interphases. The solvation 
structure of electrolytes usually consists of coordination structures 
formed by working cations (Li+, Na+, K+, Mg2+, Ca2+, and Al3+), solvent 
molecules, and/or salt anions (Fig. 3, A to H), depending on the in-
teractions among them. Specifically, the densely charged Mg2+ cat-
ions and large Ca2+ cations seriously diminish the solubility (typically 
≤0.5 M) of salts with conventional anions, such as bis(trifluoromethane)
sulfonimide (TFSI) and trifluoromethanesulfonate (OTf), in ethereal 
solvents, such as 1,2-dimethoxyethane (DME) (21). Furthermore, the 
diminished dissociation of salts produces positively charged contact 
ion pairs (e.g., [Mg2+-TFSI−] and [Ca2+-TFSI−]), which preferentially 
adsorb onto the inner Helmholtz layer and decompose into inorganic-
rich and ion-insulating interphases, thereby passivating and deactivat-
ing Mg- and Ca-metal anodes (Fig. 3B) (65, 66). By contrast, Li+, Na+, 
and K+ cations are generally solvated by solvent molecules (e.g., DME) 
in conventional monovalent electrolytes (∼1.0 M, optimized for maxi-
mum conductivity), whereas most conventional anions (e.g., TFSI−) are 
excluded from the anode inner Helmholtz layer because of the repulsive 
force. These solvent-separated ion pairs usually lead to organic-rich, 
unstable SEI layers with poor mechanical strength, leading to uncon-
trollable dendrite formation and rapid battery failure (Fig. 3A) (67).

For monovalent metal batteries, present electrolyte design strategies 
focus on achieving an anion-dominated solvation structure and a ro-
bust interfacial layer to suppress dendritic growth. One effective ap-
proach is the formulation of high-concentration electrolytes (HCEs) 
by substantially increasing the salt concentration (typically ≥3 M). 
The high molar ratio of salt to solvent forces anions into the solvation 
sheath, thereby forming abundant ion pairs and aggregates that con-
tribute to a primarily inorganic SEI (Fig. 3C). It is observed that in-
creasing the concentration of lithium bis(fluorosulfonyl)imide (LiFSI) 
salts in DME triggers the SEI microstructure evolution from a hetero-
geneous mosaic structure to a homogeneous amorphous structure, 
accounting for the granular Li electrodeposition with a high CE of 99% 
(68). Similar electrolyte formulations, such as 5.2 M NaFSI or 4.8 M 
KFSI in DME, further validate the effectiveness of HCEs in achieving 

more than 99% reversible Na and K electrodeposition (69, 70). To 
compensate for the high viscosity and salt cost of HCEs, localized 
high-concentration electrolytes (LHCEs) have been proposed, in which 
nonpolar diluents are introduced to reduce the salt concentration to 
around 1 M while preserving the favorable anion-aggregated solvation 
structure (Fig. 3D). Among the various reported diluents, some highly 
fluorinated ethers are demonstrated to be universally suitable for Li-, 
Na-, and K-based LHCE systems (71, 72). A comparative study has 
found that due to the lower Lewis acidity of K+ ions, the KFSI-based 
LHCE showed distinctive metrics over its Li and Na analogs, delivering 
a higher ion transference number and forming a more dissolution-
resistant SEI (72). Another promising approach involves the design of 
solvent molecules with weak solvation capability so that the anion 
participates in the cation solvation sheath at low concentrations 
(around 1 M), known as the weakly solvating electrolyte (WSE) ap-
proach (Fig. 3E). Recent efforts have yielded a family of functionalized 
DME molecules, among which 1,2-diethoxyethane (DEE) with ex-
tended terminal alkyl chains has emerged as a versatile example for 
preparing Li-, Na-, and K-metal–compatible single salt–single solvent 
(4S) WSEs (73–75). Furthermore, fluoroacetonitrile (FAN), a solvent 
with small size and low solvation energy selected from a variety of 
ethereal and carbonate molecules, could formulate a Li 4S WSE (i.e., 
1.3 M LiFSI/FAN) with a previously unknown ion-conduction ligand chan
nel to facilitate fast ion transport even at −65°C (2). Looking forward, 
cosolvent or high-entropy LHCEs and WSEs are attractive as next-
generation monovalent battery electrolytes, as the high molecular 
diversity can lead to complementary electrolyte properties and favor-
able solvation structures (e.g., core-shell, micelle-like, gradient, and 
oscillatory), creating an anion-derived inorganic-rich interphase while 
maintaining high ionic conductivity (76, 77).

In the realm of Mg and Ca battery electrolytes, considerable re-
search efforts have been directed toward the creation of solvent-rich 
solvation structures and the formation of ion-conducting interphases. 
A notable development is the utilization of strongly solvating solvent 
molecules, such as dimethylacetamide (DMAc), to promote salt dis-
sociation and interrupt cation-anion coordination in the electrolyte, 
so that a large number of desirable solvent-separated ion pairs form 
in the primary solvation sheath of Mg2+ and Ca2+ (Fig. 3F) (78, 79). 
Meanwhile, the 4S strongly solvating electrolytes formulated by com-
bining DMAc molecules with simple Mg(TFSI)2 or Ca(TFSI)2 salts 
could minimize the undesirable anion decomposition, which results 
in solvent-derived, inorganic-poor interphases that allow for reversible 
Mg2+/Mg0 and Ca2+/Ca0 redox. Given the success of cosolvent strate-
gies in Li, Na, and K electrolytes, these strongly solvating solvent mol-
ecules and multidentate methoxyethyl-amine [–(CH2OCH2CH2N)n–] 
chelates have also been added into DME-based Mg and Ca electrolyte 
systems as cosolvents to trigger the reconfiguration of cation solvation 
structures and enhance the stability and reversibility of divalent metal 
anodes (65, 80, 81). However, the overtight cation-solvent coordination 
in these strongly solvating electrolytes results in a high desolvation 
energy and sluggish charge transport at the liquid-solid interface, 
thereby limiting further improvement in the reaction kinetics of Mg 
and Ca metals.

Electrolyte salts are also very important in governing the electrolyte 
solvation structure (82). Substantial efforts are being made not only to 
use commercially available salts in advanced manners (e.g., dual-salt 
and high-entropy) (83) but also to synthesize new salts through clas-
sical chemical reactions (84). Among the newly synthesized weakly 
coordinating anions, boron cluster anions such as carboranes, fluori-
nated alkoxyaluminates, and fluorinated alkoxyborates stand out as a 
widely recognized paradigm for the development of monovalent (e.g., 
Li and Na) and divalent (e.g., Mg, Ca, and Zn) electrolytes (85). Notably, 
tetrakis(hexafluoroisopropyloxy)borate {[B(hfip)4]2, where hfip is C(H)
(CF3)2} with Mg2+ and Ca2+ ions in ethereal solvents represents one 
of the best-performing Mg and Ca electrolytes in terms of decent ionic 
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conductivity (∼8 mS cm−1), high anodic stability (>4.0 V), and, more 
attractively, a completely dissociated solvation structure (∼99% of solvent-
separated ion pairs; Fig. 3G) (85, 86). Furthermore, the bulk nature of 
B(hfip)4

− is effective in restricting the defluorination decomposition of 
anions and minimizing the undesired formation of MgF2 and CaF2 in 
electrodeposited Mg and Ca metals (87). Despite the advances, recent 
studies have revealed that B(hfip)4 anions mediate chemical corrosion of 
divalent metal anodes during calendar aging—a phenomenon that war-
rants further investigation (88). Conversely, although Mg(TFSI)2/DME 
and Ca(TFSI)2/DME electrolytes are prone to passivate their respective 
metallic anodes, they exhibit high anodic stability on Al current col-
lectors probably because of the presence of abundant [Mg2+-TFSI−] 

and [Ca2+-TFSI−] complexes (66, 89). By contrast, monovalent battery 
electrolytes containing TFSI and FSI anions aggressively corrode Al 
current collectors when their respective battery operating voltages ex-
ceed 4.0 V. This limitation has driven the development of noncorrosive 
salts featuring asymmetric or cyclic molecular structures to enable high-
voltage (>4.3 V) and high-energy Li-, Na-, and K-metal batteries (90–92). 
Nevertheless, the large-scale commercialization of these synthesized salts 
can be achieved only if the issues of high synthesis cost and insufficient 
synthetic yield are simultaneously addressed.

In the case of nonaqueous Al-metal batteries, efficient electro-
lytes are mainly mixtures of AlCl3 and ionic liquids (e.g., 1-ethyl-3-
methylimidazolium chloride, [EMIm]Cl) or Lewis basic ligands (e.g., 
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Fig. 3. Electrolyte solvation structure and associated interfacial chemistry for monovalent and multivalent metals. (A) Schematic showing conventional monovalent 
electrolytes with solvent-dominated solvation structures, which are easily reduced to form mechanically weak interphases on Li, Na, and K metals. (C to E) Schematics showing 
the development of (C) high-concentration electrolytes, (D) localized high-concentration electrolytes, and (E) weakly solvating electrolytes to enable anion-participated 
solvation structure and anion-derived robust interphase for Li, Na, and K metals. (B) Schematic showing conventional divalent electrolytes with a large fraction of contact ion 
pairs, which aggravate passivation of Mg and Ca metals through pronounced electrolyte decomposition. (F and G) Schematics showing the development of (F) strongly 
solvating electrolytes and (G) weakly ion-pairing electrolytes to enable regulated solvent-participated solvation structure and nonpassivating interphase for Mg and Ca metals. 
(H) Schematic showing the existence of MgCl+ or AlCl4

− complexes in chloride-based Mg or Al electrolytes, which can dissolve the passivation layer on Mg and Al metals. AGG, 
aggregate; CIP, contact ion pair; SSIP, solvent-separated ion pair.
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urea and acetamide) (31, 93, 94). In these ionic liquids, the heterolytic 
cleavage of AlCl3 induces the formation of AlCl4−, Al2Cl7− species (Fig. 3H), 
and sometimes [AlCl2·(ligand)n]+, which usually allow Al deposition 
and dissolution to occur reversibly with a high CE of >98%. Mean
while, organic (e.g., Grignard reagents) and inorganic (e.g., MgCl2) 
chlorides are also widely used in Mg electrolyte solutions to generate 
electrochemically active MgCl+ and Mg2Cl3+ (Fig. 3H), which are ben-
eficial for achieving >99% reversible Mg electrodeposition (95, 96). 
However, these metal-chloride complexes in Mg- and Al-metal batter-
ies not only sacrifice the inherent advantages of Mg/Mg2+ and Al/Al3+ 
couples, such as low redox potentials, but also pose serious corrosion 
problems for battery components, such as current collectors and cas-
ings (16, 54). More effort is needed to develop chloride-free electrolytes, 
especially based on simple salts such as Mg(TFSI)2, Mg(OTf)2, and 
Al(OTf)3 for Mg and Al batteries.

Research work on electrolyte solvation structure modulation also 
includes the selection of suitable additives, such as multivalent salts 
[e.g., Mg(TFSI)2, Al-ethoxide] for Li, Na, or K electrolyte solutions 
(97, 98) and monovalent salts (e.g., LiOTf, LiBF4, NaCl, and KCl) for Mg, 
Ca, or Al electrolyte solutions (83, 90, 94). Appropriate combinations 
of additives, salts, and solvents have led to a variety of targeted func-
tionalized electrolytes, such as wide-temperature electrolytes (99), 
high-voltage electrolytes (76), corrosion-free electrolytes (3,  84), 
moisture-stable electrolytes (94), and nonflammable electrolytes 
(75, 82). Further understanding of equilibrium and nonequilibrium 
structures of cation solvation sheaths, anion-cation pairs, salt-in-salt 
complexes, molecular clusters, and percolating networks in these ad-
vanced electrolytes will bring transformative opportunities to improve 
the electrochemical performance and operation safety of monovalent 
and multivalent metal batteries beyond their present limitations (1).

Electrode-electrolyte interphases
Located at the nanointerface between the electrode and electrolyte, 
the SEI’s composition and structure strongly depends on initial chemi-
cal reactions of metals with electrolytes and continuous electrochemi-
cal reduction of electrolytes (100). Using advanced cryo-EM technology, 
it has recently been disclosed that the SEI layers formed in some 
nonaqueous Li (6, 101), Na (72, 74), K (54, 72), Mg (102), and Ca (84) 
electrolytes are overwhelmingly composed of inorganic (e.g., oxides 

and fluorides) nanocrystalline domains randomly distributed within 
organic (e.g., alkoxides) amorphous matrixes, which is largely consis-
tent with the mosaic model (Fig. 4A). The heterogeneous mosaic SEIs 
have been shown to cause localized stripping that promotes dendritic 
and inactive metal formation and early battery failures (103). To sta-
bilize metal-electrolyte interfaces, efforts have been made to improve 
the physicochemical properties and electrochemical functionalities of 
SEIs by optimizing their structural homogeneity and compositional 
features (5). For monovalent and multivalent metal anodes, it is widely 
accepted that an optimal SEI usually requires similarly thin and ho-
mogeneous structures (e.g., multilayer and monolithic structures) yet 
different inorganic and organic components and their proportions 
(e.g., organic-rich or inorganic-rich) to achieve some universal advan-
tages, including fast ion transport but negligible electron conduction, 
a combination of mechanical flexibility and robustness, and selective 
solubility and minimal swelling in the electrolyte (3, 68, 104).

Enriching the SEI with inorganic components has recently gained 
popularity in preventing dendritic formation and improving the elec-
trochemical reversibility of Li-, Na-, and K-metal anodes. Compared 
with conventional inorganic components (e.g., oxides, sulfides), metal 
fluorides possess some attractive properties, including large bandgap 
(≥10.6 eV for LiF, NaF, and KF), high Young’s modulus (∼65.0 GPa for 
LiF and 31.4 GPa for NaF), and high interfacial energy (e.g., 73.28 meV 
Å−2 at the LiF-Li interface), which may prevent electron tunneling at 
the anode-electrolyte interface and simultaneously boost the growth 
of deposited metal in a parallel rather than vertical manner (105–108). 
When these monovalent fluorides are homogeneously interfaced with 
other inorganic ingredients, the resulting hybrid SEI layers (e.g., LiF/
Li2O/Li2ZrF6, NaF/Na2O/Na2CO3, KF/K2CO3/K3PO4) feature micro-
structures abundant in grain boundaries (Fig. 4B), which can promote 
rapid interfacial ion transport and inhibit unwanted SEI reformation 
and/or swelling during cycling (72, 74, 108). However, despite the high 
mechanical modulus of these fluorinated inorganic-rich SEIs, their me-
chanical conformality is normally questionable in safeguarding long-term 
interfacial integrity and cycling stability of metal anodes, which are 
subjected to continuous volumetric deformation (5). Conversely, or-
ganic SEI components, especially some elastomers and viscoelastic 
polymers, such as poly(vinylidene fluoride) (PVDF), poly(1,3-dioxolane) 
(PDOL), and poly(tetrafluoroethylene) (PTFE), are highly flexible to 

buffer the tensile and compressive stress 
that occurs during repeated plating and 
stripping processes. Therefore, a series 
of fluorinated inorganic-organic hybrid 
SEIs (e.g., LiF/PVDF, NaF/PDOL/graphene 
oxide, KF/PTFE) have been constructed to 
simultaneously improve the interfacial ki-
netics and stability of Li-, Na-, and K-metal 
anodes (109–111). In particular, a bilayer 
SEI, consisting of a LiF-rich inner layer 
and an outer layer containing lithium poly-
oxymethylene (LiPOM), has been shown to 
offer advantages over a single-layer LiF-
rich SEI by enabling an extended life span 
of high-energy Li-metal batteries (430 versus 
200 cycles) (5). In addition to qualitatively 
engineering fluorinated SEI chemistry, re-
search progress has also been made in 
accurately quantifying and identifying 
the specific interphase components (e.g., 
LiF, Li2O, LiH, and NaH), visualizing their 
spatial locations in dendrites and/or SEIs, 
tracking their chemical origin, and de-
termining their relation with inactive metal 
(e.g., Li and Na) formation as well as bat-
tery reversibility (112–115).

Increasing organics
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Fig. 4. SEI for monovalent and multivalent metals. (A) Schematic showing similar mosaic organic-inorganic hybrid SEI 
layers on Li-, Na-, K-, Mg-, Ca-, and Al-metal anodes. These structurally heterogeneous SEI layers trigger anisotropic ion 
transfer and uneven stress distribution, thereby leading to uncontrolled dendritic formation and early electrode failures. 
(B to E) Schematics showing optimal (B) fluorinated inorganic-rich and (D) alloy/fluoride biphasic SEI layers for Li-, 	
Na-, and K-metal anodes and (C) hydrogenated organic-rich and (E) hybrid cation SEI layers for Mg-, Ca-, and Al-metal 
anodes. These optimized SEI layers possess some universal merits of high ion conductivity, electronic insulation,  
(electro)chemical stability, and mechanically rigid-flexible synergy.
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Early studies on the SEI in multivalent metal batteries suggest that 
decreasing ion-resistive inorganics such as MgF2, CaF2, and Al2O3 
while increasing ion-conductive organic components is critical to un-
lock the reversible plating-stripping cycling of Mg-, Ca-, and Al-metal 
anodes (81, 84). In Mg-metal batteries, one of the most notable organic-
rich SEIs was ex situ made from thermal-cyclized polyacrylonitrile 
(cPAN) and Mg(OTf)2 salts, which not only permits Mg2+ transport at 
a moderate ionic conductivity of 1.19 × 10−6 S cm−1 but also enables 
efficient and reversible Mg2+/Mg0 redox reactions in Mg(TFSI)2-based 
carbonate electrolytes (116). In parallel, the in situ generation of SEI 
layers rich in poly(tetrahydrofuran) and B-O cross-linked polymer was 
also demonstrated to be conducive to nonpassivating and dendrite-free 
Mg deposition with a high average CE of >98% (81, 117). Similarly, in 
Ca-metal batteries, an organoboron-rich and CaF2-poor SEI layer de-
rived from additive-regulated Ca(TFSI)2-based electrolytes was capable 
of permitting active percolation of Ca2+, rather than inducing pas-
sivation on the Ca-metal anode (Fig. 4C) (118). Furthermore, in Al-
metal battery systems, an SEI layer predominantly composed of C=C 
and C=O species was artificially introduced to replace the natural 
passivation Al2O3 layer on Al metal, thus aiding in its reversible strip-
ping and deposition in Al(OTf)3-based electrolytes (119). Despite these 
advances, the precise chemical composition and ion-conducting mech-
anisms of these organic-rich SEI layers are still poorly understood 
owing to their amorphous nature.

Although multivalent oxides and fluorides are traditionally consid-
ered cation-insulating components (100, 120), this notion has been 
challenged by recent studies showing that some thin MgO/MgF2, AlF3-
rich bilayers, or CaF2-rich mosaic interphases could also work as 
SEI layers to permit fast ion conduction in Mg(TFSI)2-, Al(OTf)3-, or 
Ca(TFSI)2-based nonaqueous electrolytes (14, 121, 122). In contrast to 
the conflicting roles of multivalent fluorides, other inorganic chlorides 
(MgCl2, AlCl3), bromides (MgBr2, CaBr2), iodides (MgI2, CaI2), and 
especially hydrides (MgH2, CaH2) have been widely studied as benefi-
cial SEI components for multivalent metal anodes owing to their low 
ion-diffusion barriers (79, 120, 123). A thin (∼5 nm) and monolithic 
SEI layer enriched with MgH2 species (Fig. 4C), enabled by the synergy 
between the coordination and trace ionization of amine cosolvents, 
was conducive to inducing Mg2+ rapid transfer and uniform deposi-
tion in Mg(TFSI)2-based electrolytes (124). In addition, metallic Ca 
electrodeposited in the organoborate electrolytes was covered by a 
conformable SEI layer with high concentrations of amorphous Ca-Hx 
species, contributing to highly reversible and long-life Ca-metal bat-
teries (84). These studies challenge our previous understanding of the 
existence and role of interphase layers in multivalent metal batteries 
and highlight the importance of the thickness and structure of SEI 
layers, alongside their chemical composition and crystallinity, in de-
termining the ion transport behavior at electrified electrode-electrolyte 
interfaces.

For monovalent and multivalent metals, research efforts have also 
been devoted to introducing foreign metal compounds into their re-
spective SEI layers to build optimal electrode-electrolyte interfaces 
with fast interfacial kinetics and efficient dendrite suppression. One 
example of this is the development of alloy/halide biphasic mixed 
conductive interphases, which combine the high metal affinity and 
ionic diffusivity of metal alloys with the high mechanical strength and 
electrochemical stability of metal halides. The effectiveness of alloy/
halide biphasic SEI layers was first demonstrated in Li metal anodes 
such as Li13In3/LiCl (125) and successfully extended to Na-, K-, Mg-, 
Ca-, and Al-metal anodes such as Na-Sn/NaF, K-Bi/K3OCl, Mg-Sb/
MgCl2, Ca-Sn/CaI2, and Al-Bi/AlCl3 (79, 126–129). In the case of Li-metal 
batteries, a series of protective layers consisting of Li-M/LiF (where M 
is Mg, Ca, or Al) were built via two-step replacement and alloying reac-
tions between Li-metal anodes and multivalent electrolyte additives 
(MgF2, CaF2, and AlF3) (Fig. 4D) (130). By contrast, the addition of 
monovalent salts (LiCl, NaCl, and KCl) in the ionic liquid electrolytes 

of Al-metal battery systems resulted in the formation of hybrid cation 
salts (e.g., NaxAlyO2) rather than alloy (e.g., Na-Al) in the SEI layers 
(Fig. 4E) (93). These differences arise from the distinct electrode poten-
tials between multivalent and monovalent metals, where Mg2+, Ca2+, 
and Al3+ can be reduced on the monovalent metals but Li+, Na+, and 
K+ cannot be reduced on the multivalent metals. More interestingly, it 
has been found that a Li species–containing SEI layer could enable 
stable reversible Mg and Ca plating and stripping in Mg(TFSI)2- and 
Ca(TFSI)2-based electrolytes (98, 131), whereas the Mg species–containing 
inactive passivating layer could transform into an active and robust inter-
phase for Li-metal anodes (96). Nevertheless, research on hybrid cation 
SEIs is still at an early stage, and more systematic and in-depth studies 
are needed to clarify the similarities and differences in their working 
mechanisms in monovalent and multivalent batteries.

Besides Li-, Na-, K-, Mg-, Ca-, and Al-containing compounds, many 
other functional materials such as MXenes and metal-organic frame-
works have been used to construct compositionally optimized, struc-
turally homogeneous, and mechanically stable SEI layers either in situ 
or ex situ (132). Although most of these SEI layers are efficient in 
stabilizing the electrode surface and improving ion diffusion at the 
electrode-electrolyte interface, they are unable to provide effective and 
sufficient ion-conducting channels to the massive bulk metal inside 
the electrodes, which typically have a thickness greater than 100 μm. 
Recently, thin composite metal electrodes have demonstrated potential 
in tackling these problems, as they can be easily manufactured through 
industry-compatible high-temperature melting and mechanical rolling 
processes and form built-in interconnected conductive interphases 
embedded with bulk active metal. Composite metal electrodes mainly 
include alloys, such as Li/Li22Sn5, Ca2Sn, and AZ31 Mg (3% Al, 1% Zn 
by weight) (86, 133, 134), and “salt-in-metal” foils, such as Li/SnF2, 
Li/zinc dialkyldithiophosphate (ZDDP), Na/Sb-SnO2, and K/Bi2Te3 
(63, 105, 135, 136). These composite electrodes possess notable advan-
tages over pure metal electrodes, including fast ionic diffusion capa-
bilities throughout the entire electrode, homogeneous stripping and 
plating processes, suppressed galvanic corrosion at grain boundaries, 
enhanced thermal stability at high temperatures, or strengthened in-
terfacial compatibility with liquid and solid electrolytes. Together with 
their thin thickness, such as ≤20 μm for Li/ZDDP and 25 μm for AZ31 
Mg, some composite electrodes hold great promise in simultaneously 
improving the energy density and cycling stability of monovalent and 
multivalent metal batteries (134, 136).

The community has recently found that the SEI chemistry de-
pends not only on the electrolyte solvates at the electrified electrode-
electrolyte nanointerface but also on multiple components in an actual 
battery, such as the cathode (e.g., cross-talk of transition metal ions 
and shuttling effect of polysulfides species), separator (e.g., chemical 
reactions between glass fiber and Al deposits), and current collector 
(especially for anode-free battery configuration). Furthermore, the 
decomposition of electrolyte solvents (e.g., DME and amines) and con-
taminants (e.g., moisture) may release gas by-products (e.g., CH4 and 
H2), which not only react with Li, Na, or Mg metal to produce extended 
H species–containing interphases but also disrupt ion and electron 
transport paths, resulting in irregular metal deposition (102, 115, 137). 
Meanwhile, the dissolution and reformation of SEIs have been widely 
observed in monovalent and multivalent batteries, but their impact on 
battery cyclability is embroiled in controversy. Although it is widely 
accepted that SEI dissolution is a major contributor to anode corrosion 
and is associated with interface instability, capacity loss, and battery 
self-discharge, some experimental observations evidence the positive 
role of SEI dissolution in leaching detrimental moisture and chloride 
species from Mg batteries (138) and enhancing the content and dis-
tribution of LiF and NaF on Li- and Na-electrode surfaces (3, 43, 105). Overall, 
it remains a great challenge to decipher and manage the morphological 
and structural evolution of initially designed fluorinated inorganic-
rich SEIs for Li, Na, and K as well as hydrogenated organic-rich SEIs 
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for Mg and Ca during battery aging, formation, conditioning, and 
cycling processes.

Outlook
Over the past decade, there has been a marked surge in research fo-
cused on battery chemistry and materials, with a notable emphasis on 
metal anodes. Although considerable progress has been made in un-
derstanding and tailoring monovalent and multivalent metal anodes, 
some critical knowledge regarding their electrochemical plating and 
stripping behaviors is still missing, including but not limited to (i) 
the real-time structural, chemical, and morphological information of the 
electrodeposited metal at the nanometer or micrometer scale, (ii) the 
temporal and spatial transformation from the electrolyte into inter-
phases at the electrified liquid-solid interface, and (iii) the complex 
interactions among electrodeposited metals, electrolyte solvates, and 
interphase components and their precise correlation with electrode 
reversibility. In the field of Li-metal anodes, new insights are being 
offered by various advanced in situ and operando characterization 
tools, nondestructive diagnosing techniques, multimodality analysis 
approaches, and powerful supercomputing sources. For example, 
in situ liquid-phase transmission electron microscopy and electrified 
cryo-EM have enabled the direct observation of particle growth pat-
terns in the early stages of Li+ plating and quantification of the two-stage 
growth of a SEI in a Li-based tweezer battery, respectively (139, 140). 
By collecting electrolyte datasets from operando spectroscopy, ab initio 
molecular dynamics simulations, and density functional theory calcu-
lations, as well as building machine learning models and the molecular 
universe based on them, researchers have found that in addition to 
cation-anion aggregates and solvates, both the electrolyte dielectric 
environment and solvent oxygen ratio are critical descriptors control-
ling interphase chemistry and Li plating and stripping reversibility 
(67, 141). Quantitative analysis of the cycled Li anode using titration 
gas chromatography, ultrasonic imaging, and morphological charac-
terization has revealed that the loss of Li inventory is more complex 
than previously thought, involving the contribution of electronically 
isolated and ionically isolated Li metal generated under coupled elec-
trochemical and mechanical fields (45, 112). Similar systematic, quan-
titative, and comparative investigations are beginning to appear in the 
field of Na, K, and Mg battery anodes (44, 72, 115, 142), and we encour-
age more of such efforts to expand our fundamental understanding of 
the electrochemical commonalities and differences between monova-
lent and multivalent metal anodes.

The ultimate success of metal anodes in commercial batteries hinges 
on addressing both scientific and technical challenges while leveraging 
their distinctive metrics for specific applications. Owing to the syner-
gies of Li metal–compatible electrolyte solutions (e.g., HCEs, LHCEs, 
and WSEs), advanced manufacturing processes (e.g., 20-μm Li-
metal foil anode), and/or suitable battery configurations (e.g., anode-
free), researchers have succeeded in making >500–W·hour kg−1 Li-metal 
pouch batteries (7), and commercial sectors are actively pursuing Li-
metal battery applications in electric vehicles and electric aviation 
(11, 143). Future efforts should be dedicated to improving battery lon-
gevity and safety under fast charging (1C to 5C, as recommended by 
the United States Advanced Battery Consortium), low stacking pres-
sure (ideally <700 kPa), extreme temperatures (−80° to 80°C), and 
industrial abuses (short-circuiting, nail penetration, and crushing) 
(11). Although solid-state electrolytes have emerged as a promising 
choice to ensure high battery safety, they still encounter inherent 
limitations, including poor interfacial contact, dendrite propaga-
tion, and Li-metal anode fatigue (144). In the near future, data-driven 
and/or knowledge-driven design of additives that work synergistically 
with aggregate-dominated electrolytes and fluorinated inorganic-rich 
interphases remain an attractive path forward. In the meantime, re-
activating isolated inactive Li metal and introducing external Li supplies 

also provide transformative opportunities for reshaping Li loss and 
increasing the lifetime of batteries (145, 146).

New understanding about the commonalities and differences be-
tween Li-based and Na- and K-based battery chemistry has led to both 
academia and industry witnessing considerable advances in Na- and 
K-metal batteries. The energy densities of Na- and K-metal batteries 
have been increased to more than 200 W·hour kg−1 at the cell level 
and 400 W·hour kg−1 at the material level in anode-free configurations, 
respectively (147, 148). In addition to maximizing specific energy, the 
anode-free design also avoids the handling of metallic Na and K elec-
trodes, which are unstable even in dry room conditions, and allows 
the use of Al foils as anode current collectors, which differs from the 
Cu foils typically used in Li batteries. Specifically, calculations have 
indicated that replacing Cu with Al and Li with Na (or K) can reduce 
overall costs, where the implicit cost of Cu-Al replacement is 2.3 times 
that of Li-Na (or K) replacement (50). Despite their considerable en-
ergy density at low expected cost, the cycle life of anode-free Na- and 
K-based battery technologies is still far from the requirements (>1000 
charge-discharge cycles) for grid-scale stationary energy storage and 
for starting, lighting, and ignition batteries. To prolong the battery 
longevity beyond present limits, further research efforts should focus 
on inexpensive Al current collectors, including engineering micro-
structures and crystal planes for uniform and dense Na and K deposi-
tion, as well as tailoring surface reactivity and electrolyte formulations 
for homogeneous and stable Na and K interphase formation.

Multivalent metal-based battery chemistries are still at the basic 
research and development stage. The cell-level energy density of state-
of-the-art Mg-metal (53.4 W·hour kg−1) and Al-metal (90.1 W·hour 
kg−1) batteries is far inferior to that of today’s Li-ion batteries, and the 
prototype of Ca-metal pouch batteries was only demonstrated recently 
(84, 88, 149). Nevertheless, it is estimated that the specific energy can 
be further improved to >150 W·hour kg−1 when thin-metal electrodes 
(e.g., 20.8-μm Mg, 38.4-μm Ca, and 9.6-μm Al) are used to match high-
loading cathodes (industry standards typically exceed 4.0 mA·hour cm−2) 
with limited negative/positive ratios (generally ≤2) (149, 150). Note 
that the anode-free configuration may not be easily adaptable for mul-
tivalent metal batteries, as most cathode materials (e.g., Mo6S8, MnO2, 
graphite) do not contain Mg, Ca, or Al and are in a charged state (58), 
unlike the typical cathode materials (e.g., LiFePO4, Na-TMO, K-Prussian 
blue ) of monovalent metal batteries, which are in an initially dis-
charged state. More importantly, anode-free multivalent battery tech-
nologies may overlook the advantages of Mg-, Ca-, and Al-metal anodes over 
Li, Na, and K counterparts, including air stability, high-temperature 
stability, and metallurgical properties. These properties position mul-
tivalent metal batteries for extreme applications such as high-
temperature (>100°C) or flexible textile batteries (13, 14). We hope that 
our comparison of monovalent and multivalent metal anodes will help 
electrochemists and material scientists in the rational design of elec-
trodes, electrolytes, and their interfaces for next-generation Mg-, Ca-, 
and Al-metal batteries and beyond. We also encourage researchers 
from mechanical engineering, metallurgy, automotive manufacturing, 
and many other fields to participate in the battery industry, eventually 
accelerating the electrification of modern society and realizing our 
low-carbon future.
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