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Abstract: One of the major impediments to the computational investigation and design of complex

alloys such as steel is the lack of effective and versatile interatomic potentials to perform large-scale

calculations. In this study, we developed an RF-MEAM potential for the iron-carbon (Fe-C) system

to predict the elastic properties at elevated temperatures. Several potentials were produced by

fitting potential parameters to the various datasets containing forces, energies, and stress tensor data

generated using density functional theory (DFT) calculations. The potentials were then evaluated

using a two-step filter process. In the first step, the optimized RSME error function of the potential

fitting code, MEAMfit, was used as the selection criterion. In the second step, molecular dynamics

(MD) calculations were employed to calculate ground-state elastic properties of structures present in

the training set of the data fitting process. The calculated single crystal and poly-crystalline elastic

constants for various Fe-C structures were compared with the DFT and experimental results. The

resulting best potential accurately predicted the ground state elastic properties of B1, cementite, and

orthorhombic-Fe7C3 (O-Fe7C3), and also calculated the phonon spectra in good agreement with the

DFT-calculated ones for cementite and O-Fe7C3. Furthermore, the potential was used to successfully

predict the elastic properties of interstitial Fe-C alloys (FeC-0.2% and FeC-0.4%) and O-Fe7C3 at

elevated temperatures. The results were in good agreement with the published literature. The

successful prediction of elevated temperature properties of structures not included in data fitting

validated the potential’s ability to model elevated-temperature elastic properties.

Keywords: RF-MEAM; steel; iron-carbon; molecular dynamics; density functional theory; MEAMfit;

inter-atomic potential

1. Introduction

Steel is a prevalent material in our everyday life, with a broad range of applications
due to its widespread availability and desirable mechanical properties. High-temperature
mechanical properties of steel are of immense interest to the community dedicated to
understanding and designing steel [1–9]. The investigation of high-temperature properties
through physical experimentation can be a challenging and resource-intensive process,
making it a costly pursuit for researchers. The use of computational tools has significantly
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impacted the field of high-temperature research by providing a cost-effective and time-
efficient alternative for exploring material properties; while there are limitations to the
accuracy and scope of these calculations, recent advances in computational ability have
made it possible for researchers to obtain reliable results that are on par with physical ex-
periments. As such, computational methods have become a valuable tool for investigating
high-temperature phenomena and complementing traditional experimental approaches.

Density Functional Theory (DFT) is considered one of the most accurate computa-
tional tools for quantum chemistry calculations and has been employed to predict a wide
range of material properties of the many-body system [10–13]. However, due to the high
computational requirement, their use is limited to smaller systems, typically containing a
few hundred atoms. To overcome this limitation of DFT calculations, molecular dynamics
(MD) calculations using interatomic potentials are used to model bigger systems. The
interatomic interactions in such calculations are modeled using empirical or semi-empirical
potentials. The performance and accuracy of results depending entirely on the quality
of these potentials [14,15]. Hence, the focus of many researchers has been to increase the
quality of the interatomic potentials.

Over the years, various interatomic potential formulations have been proposed. The
Embedded Atom Method (EAM) and the Modified Embedded Atom Method (MEAM)
are widely used formalisms for metals and alloys [16–20]. Daw and Baskes developed
EAM [21] in 1983 and demonstrated the potential’s ability to study fracture caused by
hydrogen embrittlement in transition metals. Since then, it has been extensively used to
investigate a variety of phenomena, such as point defects, melting, alloying, grain boundary
structure and energy, fracture, segregation, surface structure, and epitaxial growth [22–24].
THe EAM formulation was modified to include angular dependencies of electron density
to develop the MEAM potential. The addition of the angular dependence term in MEAM
has the advantage of accurately defining the interactions in metals and their alloys. It was
first used to derive semi-empirical potentials for silicon, germanium, and their alloys [25].
MEAM has been further improved to a more accurate formalism called Second Nearest
Neighbor (2NN) MEAM by Lee and Baskes [26]. This semi-empirical model accurately
describes the physical properties of a wide range of elements and alloys. In 2NN MEAM
formalism, the interatomic potential is calculated from total energy and embedding energy
function (refer to Equation (4)). Then, the total energy is obtained analytically from the
zero-temperature Rose universal equation of state [27], which was further modified by
Li et al. [28], as shown in Equations (1)–(3). Hence, the interatomic potential is tied to an
equilibrium reference structure.

Eu
i (R) = −E0

i

(

1 + a∗ + a3
a∗

(R/R0
i )

)

e−a∗ (1)

a∗ = αi

(

R

R0
i

− 1

)

(2)

αi =

√

9BiΩi

E0
i

(3)

where R is the nearest neighbor distance, R0
i is the equilibrium nearest neighbor distance,

E0
i is the cohesive energy, Bi is the bulk modulus, and Ωi is the equilibrium volume of the

reference structure.
Another version of MEAM is the reference-free MEAM (RF-MEAM) formalism [29]. In

contrast to conventional MEAM, the potential in RF-MEAM formalism is no longer bound
to the Rose equation, and the pair interactions are defined using explicit functions with
adjustable parameters that can be optimized during the fitting process. The energies of any
structure can hence be reproduced by fitting a handful of parameters without defining a
reference structure. Hence, this formalism is called reference-free MEAM (RF-MEAM).
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For the Fe-C system, various semi-empirical interatomic potentials have been devel-
oped to study different physical properties. Johnson et al. [30] and Rosato [31] were among
the first to develop a potential for the Fe-C system. These studies were focused on the effect
of intrusion of carbon atoms in the Fe-host structure. Since the potential did not account
for carbon–carbon interactions, they were limited only to the study of material properties
related to solute–solvent interactions. Later, Ruda et al. [32] developed an EAM potential
for Fe-C that could efficiently predict the heat of solution of C in Fe as well as account for
C-C interactions. Henriksson et al. [33] also developed an analytical bond order interatomic
potential for Fe-C capable of predicting simple point defects in carbides in reasonable
agreement with the available experimental and DFT data. Later, Lee [34] developed an
interatomic potential for Fe-C based on the previously developed 2NN MEAM potentials
for Fe and C. Using this potential, various physical properties, such as the dilute heat of
solution of carbon, the vacancy–carbon binding energy, and its configuration, the location
of interstitial carbon atoms and the migration energy of carbon atoms in bcc and fcc Fe
were calculated with good accuracy. In 2014, Lalitha et al. [35] developed a potential for
Fe-C based on the MEAM formalism and successfully predicted the melting temperature
of cementite.

Although many potentials [30–32,34–38] have been developed for iron-carbon alloys,
there are no such potentials that are dedicated to the high-temperature elastic properties.
In addition, iron-carbon alloys have not been studied using RF-MEAM formalism. Thus,
we aim to produce an inclusive potential for the Fe-C system within the framework of the
RF-MEAM formalism that can simulate and reproduce high-temperature elastic properties
of different phases with good accuracy.

2. Materials and Methods

In the RF-MEAM formalism, the total energy of the N-atom system has a form similar
to EAM potential and is expressed as [39]:

E =
N

∑
i=1

Eemb
i (ρi) +

1

2

N

∑
i 6=j

φij(rij) (4)

where Eemb
i (rhoi) is the embedding function, ρi is the fictitious electron density at site i,

and φij(rij) is the pair potential between atoms i and j separated by a distance rij. The
embedding function is described using Equations (5)–(7) [40]:

Eemb
i (ρi) = aiρ

1
2
i + biρ

2
i + ciρ

3
i (5)

ρi =
2ρi(0)

1 + e−τi
(6)

τi =
3

∑
l=1

t
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i
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)2

(7)

where ai, bi, and ci are (species-dependent) parameters that need to be optimized and ρ
(0)
i

and ρ
(l)
i are contributions to background density ρi with and without angular contribution,

respectively, which are again modeled using the following Equations [26]:
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)
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where P(l)(cosθjik) is the Legendre polynomial which introduces the effect of bond angles

into the MEAM formalism. The terms f
(l)
j and f

(l)
k are the partial background density

contributions, which are described by Equation (10) [26]:

f l
j (r) =

N1

∑
n=1

a
(n,l)
j

(

r
(n,l)
j − r

)3
·θ
(

r
(n,l)
j − r

)

(10)

Similarly, the pair potential is expressed as shown in Equation (11) [41]:

φi,j(rij) =
N2

∑
n=1

b
(n)
i,j

(

s
(n)
i,j − r

)3
·θ
(

s
(n)
i,j − r

)

(11)

where n is the total number of terms to be included in the pair potential and electron density,

a
(n,l)
j , r

(n,l)
j , b

(n)
i,j , and s

(n)
i,j are the parameters that need to be optimized, θ

(

r
(n,l)
j − r

)

, and

θ
(

s
(n)
i,j − r

)

are the step functions in the form θ(r
′
− r) with cutoff r

′
> r. For a two-atom

system, considering three pairwise terms for each of the electron densities and pair-potential
(i.e., N1 = N2 = 3 in Equations (10) and (11)), there will be 72 parameters in the potential
file which will be fitted on the energies, forces, and stress tensors data.

Four common hypothetical structures of Fe-C (B1, B2, B3, and L12) and one experi-
mentally observed structure (cementite) were initially considered for the calculation. The
methodology used in this work is shown in Figure 1 and is discussed further below.

Figure 1. Flowchart of the methodology used for the potential development.

2.1. Ground State DFT Calculation

All DFT calculations were performed employing the Vienna Ab-initio Simulation Package
(VASP) [42] using projector augmented wave (PAW) [43] pseudopotentials. The exchange-
correlation functional was calculated using the Perdew–Burke–Ernzerhof Generalized-Gradient
Approximation (GGA-PBE) [44] due to its efficiency and accuracy in describing the properties
of transition metals and their alloys, particularly for elastic properties [45–48]. The ground
state energy was calculated for all five structures by performing zero Kelvin structure opti-
mization, for which the number of atoms, supercell structures, and k-points used is given
in Table 1. Similarly, the structures to be used for AIMD calculations were also optimized,
for which the number of atoms, supercells, and k-points is shown in Table 2. As seen in the
tables, larger supercells were used for accurate ground-state energy calculations. However,
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smaller supercells were used for the optimization prior to AIMD because performing DFT
and AIMD calculations using the larger supercells would be computationally expensive.
For optimization, a pre-defined calculation sequence was performed.

Table 1. Description of various structures used for ground state calculations. The unit cells of each

structure are detailed in supplementary information (Figure S1).

Fe-C Structure k-Points (Gamma) No. of Atoms Supercell

B1 7 × 15 × 15 128 4 × 2 × 2
B2 9 × 12 × 16 120 5 × 4 × 3
B3 7 × 15 × 15 128 4 × 2 × 2

Cementite 23 × 10 × 7 64 1 × 2 × 2
L12 10 × 15 × 15 48 3 × 2 × 2

Table 2. Description of various structures used for AIMD calculations

Fe-C Structure k-Points (Gamma) No. of Atoms Supercell

B1 15 × 15 × 15 64 2 × 2 × 2
B2 16 × 16 × 16 54 3 × 3 × 3
B3 15 × 15 × 15 64 2 × 2 × 2

Cementite 23 × 10 × 7 64 1 × 2 × 2
L12 10 × 15 × 15 48 3 × 2 × 2

In addition to structure optimization, elastic constants calculation was also performed
on the structures in Table 1. The elastic tensors were obtained by applying six finite
distortions to the lattice and using the resulting stress–strain relationship to calculate the
elastic constants. The calculated elastic constants were later used for the comparison with
the MD calculated result. The energies, forces, and stress tensors from the elastic constant
calculations were also used as the input in the data fitting process.

Phonon calculations using DFT were performed implementing the finite difference
method using the PHONOPY code [49]. The code calculates the Hellmann–Feynman forces
induced by single atom displacement calculated from the supercells through the VASP
code. For cementite, a 3 × 2 × 2 supercell with 192 atoms was used, whereas for O-Fe7C3, a
2 × 2 × 1 supercell with 240 atoms was used. The cutoff energy for the phonon dispersions
calculation was 520 eV, and the k-points of brillouin zone sampling grid of 4 × 3 × 3 and
3 × 3 × 3 was applied for cementite and O-Fe7C3, respectively.

2.2. Low-Convergence AIMD Calculation

The optimized structures, as discussed in Section 2.1, were used to perform finite
temperature AIMD calculations to obtain various high-temperature configurations. It
is important to note that the purpose of these calculations is not to accurately calculate
forces, energies, and stress tensors, but rather to perform phase sampling. This was
accomplished by performing AIMD calculations using low-convergence criteria, such as
the “Fast” Algorithm, “Normal” precision, and a single k-point, i.e., 1 × 1 × 1. Initially,
MD runs were performed using an NPT ensemble for 500 steps with a time step of 1.5 fs at
a temperature of 300 K and a pressure of 1 Bar. These equilibration steps ensure that the
simulations start from a consistent and well-defined initial condition, allowing for accurate
and reliable results. After system equilibration, data were collected by performing an
additional 1000 steps at NPT, referred to as the production run. Next, thirty configurations
were randomly extracted from these production steps for the high-convergence calculations.
The same method was repeated for ionic temperatures of 500 K and 1000 K.

2.3. High-Convergence DFT Calculation

From the AIMD calculation results, thirty random configurations were taken for each
of the five structures (see Table 1) at temperatures of 300 K, 500 K, and 1000 K, resulting in
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a total of 450 random configurations. For each of these configurations, high-convergence
criteria were used for precise calculation of forces, energies, and stress tensors. High-
convergence criteria are cut-off energy of 520 eV, EDIFF (energy difference criteria for
exiting the electronic convergence loop) equal to 10−6 eV, and denser k-points, which are
given in Table 2. This technique of using low parameters to efficiently sample the phase
space and then using higher parameters to obtain accurate observables is similar to the
‘upsampled thermodynamic integration using Langevin dynamics’ (UP-TILD) method [50]
described by Srinivasan et al. in [51].

2.4. Potential Parameter Fitting

Structure optimization, AIMD calculation, and high-convergence calculation, collec-
tively, can be referred to as “data generation”. The data obtained from the high-convergence
calculations, as well as the data from elastic constant calculations, were an input for the
MEAMfit code developed by Andrew Ian Duff [52]. The “vasprun.xml” files generated
in each DFT calculation were used as input files for data fitting. MEAMfit code extracts
energies, forces, and stress tensors data from “vasprun.xml” files and outputs EAM or
RF-MEAM potentials parameter files.

Multiple datasets were formed from the data of five structures and were used in-
dependently in the data fitting process. Three summation terms were selected for the
partial electron densities and the pair potential during the fitting process. A weight ratio of
1:0.1:0.001 was used for the energies, atomic forces, and stress tensors. In the case of the
comprehensive dataset (i.e., a dataset containing all five structures’ data), 78 parameters of
RF-MEAM were fitted to 40,805 data points. For each dataset, ten potentials were generated
and further optimized using a genetic algorithm and conjugate-gradient minimization
scheme. The optimization function was calculated for the newly developed potentials
during the optimization process, and if the optimization function is smaller than any of the
previously calculated top-ten potentials, it replaced that potential in the list. This process
was repeated until the convergence criteria are met. Finally, the potential with the smallest
optimization function, R, was chosen as the optimal potential from each dataset.

2.5. Potential Selection and Validation

The optimized potentials were employed to perform MD calculations on LAMMPS
(an adapted version of LAMMPS for RF-MEAM by Prasanth Srinivasan [51]) to predict the
ground-state mechanical properties of the alloys. Initially, the generated potentials were
used to calculate the equilibrium volume, and bulk modulus using the Birch–Murnaghan
equation of state, compliance tensors, and elastic constants, of various Fe-C structures.
The calculated properties were then compared with the DFT and experimental results,
published in the literature. In other words, the potential that could precisely predict the
mechanical properties of known alloys (ones used in the fitting process) of Fe-C was termed
as the best potential.

The final potential from the abovementioned process was used to perform phonon
calculation to reproduce the phonon dispersion curves for cementite and orthorhombic-
Fe7C3 (hereafter referred to as O-Fe7C3) structures. The potential-level phonon calculations
were performed using phonoLAMMPS [53], which calculate the harmonic interatomic force
constants using phonopy and LAMMPS. Additionally, the potential was tested to predict
the elastic properties of the structures that were not included in the data fitting process.
Specifically, Young’s modulus, bulk modulus, and rigidity modulus of elasticity at elevated
temperatures were calculated for Fe-C alloys containing 0.1% and 0.2% of carbon by weight
(hereafter referred to as FeC-0.1%, and FeC-0.2%, respectively), and O-Fe7C3 alloys, after
which they were compared to the experimental results that have been previously reported
in the literature.
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3. Results and Discussion
3.1. Parameters for AIMD Calculations

The ab initio MD calculations mentioned in the methods section were performed using
an NPT ensemble. An NPT ensemble in VASP is attained by combining the Parrinello–
Rahman [54] method with a Langevin thermostat [55]. The NPT ensemble calculations
require the specification of the following parameters: LANGEVIN_GAMMA, which
sets the friction coefficient for the atomic degrees-of-freedom for Langevin thermostat;
LANGEVIN_GAMMA_L, which sets the friction coefficient for lattice degrees-of-freedom
for Langevin thermostat using the Parrinello–Rahman method; and PMASS, which sets a
fictitious mass to the lattice degrees-of-freedom in case of the Parrinello–Rahman method.
Since the above-mentioned parameters are system-dependent, they need to be defined for
each system. The best estimate of these parameters has been determined by the trial-and-
error method, as discussed further.

We started by fixing the value of LANGEVIN_GAMMA and LANGEVIN_
GAMMA_L to 0.5, and systematically changing the value of PMASS to 1, 3, 5, 10, 100, and
1000. Temperature and pressure data at each step were extracted from the OUTCAR file
and root mean squared error (RMSE) on both temperature and pressure was calculated for
each case. The RMSE quantifies the average deviation of the calculated instantaneous tem-
peratures and pressures from the target values of 300 K and 0 bar, respectively. The RMSEs
of temperature and pressure were independently ranked for each case, and the average of
these two rankings was subsequently calculated for each case. The case with PMASS = 1
was found to have the least averaged rank, for which the temperature and pressure fluctu-
ations are shown in Figure 2a,b. Again, fixing PMASS to 1, LANGEVIN_GAMMA and
LANGEVIN_GAMMA_L were varied (1, 3, 5, 10, 20, 50, and 100). This process gave an
optimized set of these parameters. The least averaged rank was obtained at PMASS = 1,
and LANGEVIN_GAMMA and LANGEVIN_GAMMA_L were both equal to 50. The
pressure and temperature fluctuations in calculation using these optimized parameters are
shown in Figure 2c,d.

3.2. Ground State Elastic Calculation

Energy versus volume data was obtained for B1, B2, B3, cementite, and O-Fe7C3

structures using the potentials developed from different datasets. By fitting the energy
and volume data to the Birch–Murnaghan equation of state, the bulk modulus of elasticity
and its pressure derivative were obtained for each potential. These results, along with the
elastic tensors presented later in this section, were compared to experimental and DFT
results in order to assess the accuracy and reliability of the potentials, which allowed us
to identify the best potential. Table 3 details the results produced by our best RF-MEAM
potential in comparison to the experimental and DFT results from the literature. From the
table, it is apparent that the results from our best potential are in very good agreement with
the literature having a deviation of 2.7%, 11.9%, 11.6%, 7.7%, and 9.5% in bulk modulus for
B1, B2, B3, cementite, and Fe7C3, respectively. Figure 3a illustrates the change in cohesive
energy as a function of volume for cementite. The experimental curve was obtained by
substituting experimental values of V0, B0, and B0’ in Murnaghan’s equation of state, as
mentioned in [35]. As seen in the figure, the RF-MEAM potential predicts the equilibrium
volume in good agreement with the experimental curve (≈1.2% deviation). Similarly,
Figure 3b compares the cohesive energy versus volume curve for B1 calculated using the
RF-MEAM potential with the DFT curve reported by [35], showing that the equilibrium
volume calculated using the RF-MEAM potential is approximately 2.4% more than in the
DFT curve. Figure 3c also compares the cohesive energy versus volume curve for the L12
structure calculated using the RF-MEAM potential with its DFT-calculated counterpart,
showing that the equilibrium volume calculated using the RF-MEAM is approximately 5.8%
more than in the DFT curve. In all three cases, for ease of comparison, the experimental
or DFT curves are shifted vertically to match the minimum energy obtained using the
RF-MEAM potential.
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Figure 2. Fluctuations in regulated parameters over time in the NPT ensemble using LANGEVIN_

GAMMA and LANGEVIN_GAMMA_L equal to 0.5 and PMASS equals 1: (a) Pressure vs. time,

(b) Temperature vs. time, where LANGEVIN_GAMMA and LANGEVIN_GAMMA_L equal to

50 and PMASS equals to 1: (c) Pressure vs. time, (d) Temperature vs. time. The black (solid) line

is the actual data at a certain time, whereas the red (dotted) line is the running average over every

20 datapoints.

Table 3. Comparison of our results with the published DFT and experimental data for equilibrium

volume, bulk modulus, and pressure derivative calculated by the Birch–Murnaghan equation of state.

Experimental data are included in the brackets.

Structure
V0 (Å3) B0 (GPa) B0’

RF-MEAM Literature RF-MEAM Literature RF-MEAM Literature

B1 (FeC) 65 64 a,b 338 329 a 5.28 4.40 a

B2 (FeC) 16 15 a 302 343 a 4.12 4.40 a

B3 (FeC) 78 77 a 222 251 a 4.50 4.20 a

Cementite
(Fe3C)

155 154 a 252 234 a 4.05 4.00 a

O-Fe7C3 94
89 b, 91 c

(93 d)
288

263 b ,
262 a 3.10

5.04 b,
3.70 a

a Henriksson et al. [56]; b Chihi et al. [57]; c Fang et al. [58]; d Villars [59] as cited by Henriksson et al. [56].

Stress–strain relationships were evaluated to calculate the compliance tensor by distort-
ing the lattice in six different directions independently. These compliance tensors satisfied
the generalized stability criteria for cubic and orthorhombic crystals [60]. Polycrystalline
elastic constants were calculated from these single-crystal elastic constants using the Reuss,
Voigt, and Hill Equation [61–63]. More details on polycrystalline modulus calculations
are provided in the supplementary information. Table 4 shows the compliance tensor and
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polycrystalline elastic properties (bulk modulus, Young’s modulus, and rigidity modulus)
in comparison with the results from different studies.
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Figure 3. Comparison of energy vs. volume curves for (a) cementite, (b) B1, and (c) L12 with

experimental and DFT results. Both DFT and experimental results used for the comparison are

from Lalitha et al. [35]. These curves are shifted vertically to match the RF-MEAM calculated

equilibrium energy.

Table 4. Single-crystal and polycrystalline elastic constants for different alloys calculated using the

produced RF-MEAM potential. Elastic constants of other alloys (B2, B3, and L12) are included in the

Supplementary Information’s Table S1.

Elastic
Constants

(GPa)

Fe3C-Cementite FeC-B1 O-Fe7C3

This Study Literature This Study Literature This Study Literature

RF-MEAM DFT DFT/MEAM RF-MEAM DFT DFT/MEAM RF-MEAM DFT DFT/MEAM

C11 399 296 388 a 585 584 566 b 399 344 394 c

C22 459 392 345 a - - - 469 428 445c
C33 364 330 322 a - - - 444 423 452 c

C12 236 137 156 a 214 205 213 b 238 166 185 c

C13 210 181 164 a - - - 245 170 179 c

C23 204 155 162 a - - - 255 182 170 c

C44 116 131 134 a 125 82 145 b 106 95 126 c

C55 40 19 15 a - - - 98 89 112 c

C66 119 135 134 a - - - 81 66 78 c

-
B 280 218 224 a 338 331 331 b 310 247 262 c

G 93 93 95 a 149 125 158 b 95 95 114 c

Y 252 245 249 a 390 334 408 b 259 253 298 c

a DFT result from Jiang et al. [64]; b Result from MEAM potential by Laalitha et al. [35]; c DFT result from

Chihi et al. [57].

For cementite, the MD-calculated compliance tensors are comparable to the DFT-
calculated counterparts and have a minimal deviation from the published results. The bulk
modulus (B) calculated by the RF-MEAM potential is within 28.4% of the DFT result from
the literature. However, the rigidity modulus (G) and Young’s modulus (Y) are within
2.1% and 1.2%, respectively. For B1, the compliance tensors as well as the polycrystalline
elastic moduli are in very good agreement with the literature results. The deviation of
the calculated polycrystalline elastic moduli w.r.t. the literature results is less than 5%.
Additionally, in the case of O-Fe7C3, the potential was able to faithfully reproduce the
single crystal elastic constants, even though this structure has not been used in the fitting
process. The polycrystalline elastic constants for O-Fe7C3, namely B, G, and Y, also exhibit
a similar trend and are in good agreement with the published results.
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For further validation, the phonon spectra were computed at the DFT level and using
the optimized potential. Spectra were computed for cementite, O-Fe7C3, and B1 phases.
The B1 phase was found to be dynamically unstable, with imaginary frequencies present in
the spectra (not shown here). Cementite and O-Fe7C3 were both dynamically stable, and as
shown in Figure 4, the spectra computed using the potential are in good agreement with
the DFT results for both phases. This includes the slopes at the Gamma point, which are
related to the elastic constants, explicitly included in the training set. Other features of the
spectra were not directly included in the training process, and the good performance of the
potential here validates the use of molecular dynamics simulations in the DFT training set
for effectively capturing the vibrational properties of the materials under study.

(a) (b)

Figure 4. Comparison of phonon dispersion curves calculated with the optimized potential (blue)

with the ones calculated with DFT (red) for (a) cementite and (b) O-Fe7C3 structures. For a color

version of this figure, please refer to the online version of this article.

3.3. Finite-Temperature Elasticity Calculation

Elastic properties of interstitial alloy Fe-C with bcc structure at various temperatures
were reproduced using the developed potential. Two alloys of Fe-C, with 0.2% and 0.4% car-
bon concentration by weight, were considered for this study. These alloys were created
by randomly placing carbon atoms in octahedral interstitial positions of the bcc-Fe struc-
ture. The number of carbon atoms to be placed were calculated by converting the weight
percentage to atomic percentage. For Fe-C-0.2% and 0.4% alloys, the conversion would
be ≃1, and ≃2 atomic percentages, respectively. The individual elastic constants Cij were
calculated with the developed potential and usinzg the Reuss, Voigt, and Hill approxima-
tion [65], while polycrystalline elastic constants were also calculated, as shown in Table 5.
Furthermore, the aforementioned mechanical stability criteria for the cubic structure were
satisfied by the individual elastic constants.

The calculated Young’s moduli of elasticity for FeC-0.2% and FeC-0.4% were compared
with the experimental data reported by [66] and the SMM (Statistical Moment Method)
calculated data reported by Tinh et al. [67]. The comparison is depicted using the graph
in Figure 5. As seen in Figure 5a, for FeC-0.2%, the calculated Young’s moduli at different
temperatures precisely follow the experimental results with a maximum deviation of 7.7%
at 866 K. In Figure 5b, the Young’s moduli for FeC-0.4% have been plotted against the
respective temperatures. The Young’s modulus decreased with increasing temperatures
and closely follows the experimental curve. The maximum deviation in the case of FeC-0.4%
alloy was 13.3% at 866 K. It is also worth mentioning that for both alloys, our potential was
able to reproduce the Young’s modulus for a wide range of temperatures more accurately
than previously reported results.
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Table 5. Various elastic moduli of FeC-0.2% and FeC-0.4% alloys at different temperatures.

T(K)
FeC-0.2% FeC-0.4%

B (GPa) G (GPa) E (GPa) B (GPa) G (GPa) E (GPa)

73 215 81 217 214 80 214
144 211 79 211 210 79 210
200 206 77 206 204 78 207
294 202 76 203 202 76 203
422 195 74 196 194 72 192
533 186 70 187 185 70 186
589 186 69 184 183 67 179
644 179 67 179 180 65 173
700 173 64 172 174 60 162
811 167 53 144 169 52 141
866 165 49 134 162 50 135
922 - - - 154 42 116
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Figure 5. Young’s moduli of interstitial Fe-C alloys: (a) FeC-0.2% and (b) FeC-0.4% at various

temperatures. For comparison, experimental data [66] and SMM-calculated data by Tinh et al. [67]

are also included.

Figure 6 shows the bulk modulus for the O-Fe7C3 alloy as a function of temperature,
with the DFT result by T. Chihi et al. [57] included alongside the comparison. The results
were compared with DFT data rather than experimental due to the unavailability of robust
experimental data for the structure. As shown in the figure, the calculated bulk modulus
deviates noticeably from T. Chihi et al.’s result at low temperatures. However, at higher
temperatures, the results are in excellent agreement, from room temperature up to 1200 K.
The slope of the calculated curve seems to be overestimated initially. However, above room
temperature, the slope aligns better with the DFT-calculated results. A point of note here is
that the produced potential predicted the elevated temperature bulk modulus as precisely
as DFT-calculated results.
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Figure 6. Bulk moduli of O-Fe7C3 at various temperatures (up to 1200 K) in comparison with the

DFT results of T. Chihi et al. [57].

4. Conclusions

In summary, we developed a potential for the Fe-C alloy system within the RF-MEAM
formalism by fitting the parameters of the potential against the DFT-calculated energies,
forces, and stress tensor data. Various structures were considered for creating eclectic
datasets. The potential was developed to reproduce the elastic properties of Fe-C alloy
system, especially at elevated temperatures. To test the potential, elastic properties of
B1, cementite, and O-Fe7C3 were calculated and compared against our DFT calculation
results, as well as those reported in the literature (experimental, DFT, and MD results).
The comparison revealed good agreement, indicating the effectiveness of the potential.
Furthermore, we also compared the phonon spectra calculated using the potential with the
DFT-calculated phonon dispersion curves; the potential-calculated curve closely followed
the DFT-calculated curve, demonstrating good agreement between the two methods. In
addition to testing the accuracy of the potential to predict ground state properties, we
reproduced the elastic properties of Fe-C alloys at higher temperatures. Specifically, we
examined FeC-0.2%, FeC-0.4%, and O-Fe7C3. The results showed that the RF-MEAM
potential was able to accurately predict the elastic properties of these materials up to 1200 K,
with some predictions even surpassing previously reported literature’s accuracy.

We believe that this work will lay the foundation for further investigation into the
use of the RF-MEAM potential for predicting the elastic properties of steel at a range of
temperatures and compositions. In future work, we will be focusing on adding more major
constituent elements of steel, such as Mn, Si, Cr, etc., to form a more broadly applicable
Rf-MEAM potential. Additionally, it would be useful to understand the underlying factors
that contribute to the potential’s accuracy, in order to further improve its predictive power.
Overall, our research has shown that the RF-MEAM potential is promising for predicting
elastic properties in steel alloys, and has the potential to be a valuable asset for materials’
design and modeling.
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Supplementary Materials: The following supporting information can be downloaded at: https://

www.mdpi.com/article/10.3390/ma16103779/s1, Figure S1: Unit cells of various Fe-C structures used

in this study: (a) B1, (b) B2, (c) B3 and (d) L12. Fe atoms are denoted by large (blue) spheres whereas

C atoms are denoted by smaller (black) spheres; Figure S2: Unit cells of various Fe-C structures

used in this study: (a) Cementite, and (b) O-Fe7C3. Fe atoms are denoted by large (blue) spheres

whereas C atoms are denoted by smaller (black) spheres; Table S1: Elastic Properties of B2, B3, and

L12 structures calculated by the developed RF-MEAM potential.
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