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Quality Analysis of Battery Degradation Models 
with Real Battery Aging Experiment Data 

Abstract—The installation capacity of energy storage system, 
especially the battery energy storage system (BESS), has increased 
significantly in recent years, which is mainly applied to mitigate 
the fluctuation caused by renewable energy sources (RES) due to 
the fast response and high round-trip energy efficiency of BESS. 
The main components of majority of BESSs are lithium-ion 
batteries, which will degrade during the BESS daily operation. 
Heuristic battery degradation models are proposed to consider the 
battery degradation in the operations of energy systems to 
optimize the scheduling. However, those heuristic models are not 
evaluated or demonstrated with real battery degradation data. 
Thus, this paper will perform a quality analysis on the popular 
heuristic battery degradation models using the real battery aging 
experiment data to evaluate their performance. A benchmark 
model is also proposed to represent the real battery degradation 
value based on the averaged cycle value of the experimental data.  

Index Terms—Battery Aging Test, Battery Degradation 
Models, Battery Energy Storage System, Energy Management 
System, Lithium-ion Batteries, Renewable Energy Sources. 

I.  INTRODUCTION 
he decarbonization trend leads to the new challenge in 
power systems, which is the increased uncertainty 

associated with the large amount of renewable energy sources 
deployed in the system [1]. Thus, battery energy storage system 
(BESS) develops fast in recent years to address the uncertainty 
and inefficiency issues that caused by renewable energy sources 
(RESs) due to its fast response and high round-trip efficiency 
[2]. A good example is that there are a number of new solar and 
battery co-located farms recently [3].  

Previous studies have proved that BESS can be a perfect 
solution to deal with the uncertainty caused by RESs [4]-[7]. 
However, none of those papers consider the battery degradation 
of the BESS in their energy management strategy. The main 
component of the majority types of BESS in the current market 
is lithium-ion battery cell. Lithium-ion batteries are connected 
in parallel and/or series in the battery modules. A BESS battery 
pack consists of multiple battery modules. The chemical 
characteristics of lithium-ion batteries make it degrade during 
the cycling [8]. This could lead to huge battery degradation over 
the years and result to financial losses for investors if it is not 
considered in the energy management system.  

Thus, some papers proposed heuristic battery degradation 
models (BDMs) to mitigate the gap that the battery degradation 
can be considered in the energy management system. 
References [9]-[11] proposed a linear degradation cost 
parameter that is related to the power or energy usage. In other 

words, they added a linear battery degradation cost in the 
objective function in the scheduling optimization problem. A 
battery degradation model based on the depth of discharge 
(DOD) of each cycle is proposed in [12]-[14]. The degradation 
is calculated based on the average degradation value of each 
cycle respect to the experimental data that under certain DOD. 
These heuristic models seems reasonable and effective in the 
battery degradation quantification. However, they are not 
evaluated and compared with the real battery aging experiment 
data.  

To evaluate the performance of the popular heuristic BDMs, 
this paper conducted a quantity analysis of those BDMs with 
the real battery aging experiment data. A benchmark model is 
also created based on the true degradation from the experiment 
data to gauge the accuracy of the heuristic BDMs. Also, the real 
data analysis is conducted in this paper. Therefore, we will be 
able to verify the performance of the heuristic BDMs and learn 
the degradation characteristic of the lithium-ion batteries. 

The remainder of the paper is organized as follows. The 
mathematical formulations for heuristic popular BDMs are 
presented in Section II. Section III describes the details and 
analysis of the real battery aging experiment data. Model 
comparison and result discussions are presented in Section IV. 
Section V concludes the paper. 

II.  HEURISTIC BATTERY DEGRADATION MODELS 
In this paper, two popular BDMs are selected to perform a 

quality analysis with the real battery degradation data. The 
formulation of BDMs are shown below in this section. 

A.  Linear Degradation Model 
The linear degradation model with a constant degradation 

rate [9]-[11]. The battery degradation cost (BDC) in their 
proposed BDM is either linear with the power usage or the 
energy usage of BESS. The constant degradation rate is 
determined with the manufacture battery data: dividing the 
capital cost by the projected total available energy as shown in 
(1), where the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 represents the predicted lifecycle number, 
𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑘𝑘𝑘𝑘ℎ)  represents the maximum energy capacity of 
BESS and 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 represents the total investment costs of BESS. 
The battery degradation cost is shown in (2) where 
 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡  (𝑘𝑘𝑘𝑘) and  𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 (𝑘𝑘𝑘𝑘) represent the charging 
and discharging power at time period t respectively.  

𝐶𝐶𝐵𝐵𝐷𝐷 = 𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) (1) 
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𝑓𝑓(𝐵𝐵𝐵𝐵𝐶𝐶) = � 𝐶𝐶𝐵𝐵𝐷𝐷 ∗ (𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡 + 𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡)
𝑡𝑡

 (2) 

 

B.  DOD based Degradation Model 
The second BDM that proposed in [12]-[14] is based on the 

DOD value for each cycle. The degradation value for each cycle 
is determined by the average cycle degradation under that 
certain DOD at the experiment data. The DOD value versus 
predicted number of lifecycle is shown in Fig. 1 [15]. Different 
DOD values will lead to the different numbers of cycles to reach 
a certain percent of the original capacity. In other words, the 
degradation value will be different under different DOD values. 
The 𝐶𝐶𝐵𝐵𝐷𝐷

𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡   shown in (3) in this BDM represents the 
degradation cost variable that is determined by different DOD 
value based on the battery degradation data. 

𝑓𝑓(𝐵𝐵𝐵𝐵𝐶𝐶) = � 𝐶𝐶𝐵𝐵𝐷𝐷
𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡

𝑡𝑡
 (3) 

 
Figure 1. Dynamic stress test (DST) under different DOD values [15]. 

III.  BATTERY DEGRADATION DATA 
The real battery degradation dataset analyzed in this paper 

is obtained from the Battery Archive website [16] that is 
maintained by Sandia National Lab. It has data for over 100 
lithium-ion battery aging tests, which are publically available 
and open source for use. Those battery aging tests covers 
different ambient temperature, charge or discharge rate, DOD 
values and different materials of cathode for the lithium-ion 
batteries. Table I presents the numbers of the battery aging tests 
under different discharge rates.   

Table I Distribution of battery aging tests. 
Battery Aging Tests # Discharge Rate 

Cathode Type 0.5C 1C 1.5 C 2C 3C 
LCO 7 / / 8 / 

NMC-LCO / / 15 / / 
LFP 7 9 / 6 7 
NCA 29 10 / 6 / 
NMC 8 10 / 6 8 

Fig. 2 represents six independent battery aging tests that 
were tested under 100% DOD, and 1.5C discharge rate at 25℃ 
ambient temperature. This figure gives an overview of the 
battery degradation results. The y axis represents the capacity 
of the battery and the x axis represents the cycle number. The 
capacity is determined by the available fully discharge capacity 

at each cycle. The degradation is calculated by the difference in 
energy capacities between two continuous cycles. From the 
figure, even though the six tests operates at the same condition, 
we can observe that the capacity curve does not overlap. Each 
battery performs different especially after the 700 cycles, this is 
due to the stochastic characteristic of lithium-ion battery [17]. 
Also, there are a lot of spikes from the capacity curve, those 
spikes are resulted by procedures of battery aging tests. After a 
certain number of cycling, they conduct a lower discharge rate 
for 1 cycle which results to a higher available discharge 
capacity for that certain cycle. In this case, the normal discharge 
rate is 1.5C while it is 0.5C for those spikes’ cycle. Also, there 
are some cycles’ capacities dropping down to 0, which is 
because those cycles are in the idle mode. Thus, when we 
analyze the tests, we can ignore those spikes in the following 
figure. Fig. 3 shows the detail of Fig. 2 by limiting the y axis 
between 0.5 and 3 Ah. From Fig. 3, it is more clearly to observe 
the capacity degrades diversely even under the same aging test 
condition with the same battery. This also indicates the 
difficulty of the battery degradation prediction. 

Similar to Figs. 2 and 3, we also present another groups of 
battery aging tests with lithium ferro-phosphate battery (LFP). 
Fig. 4 shows the battery aging data of 4 groups of tests. From 
the figure, it seems the LFP is even worse in terms of 
performance consistency and stability. Only tests c and d follow 
the expected trend of the expected capacity curve. It is extreme 
unstable for tests a and b. Thus, we can conclude that different 
types of lithium-ion batteries may perform very differently.   

 
Figure 2. Battery capacity curve of HNEI NMC LCO 25C 0-100 0.5-1.5C. 

 

 
Figure 3. Detailed battery capacity curve of NMC LCO 25C 0-100 0.5-1.5C. 
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Figure 4. Battery capacity curve of SNL LFP 20-80 0.5C/0.5C 25C. 

Fig. 5 presents the capacity curve of the same battery with 
Fig. 4 but the aging tests are under different discharge rates. The 
data applied here is the LFP battery at 35℃ with 100% DOD. 
The charge rate is kept at 0.5C while the discharge rate varies 
by 0.5C, 1C, 1.5C and 2C for 4 battery aging tests respectively. 
From the figure, we can tell that the test with 3C discharge rate 
has the highest degradation among all other aging test while the 
degradation for 1C and 2C discharge rates is similar to each 
other. The 0.5C discharge rate results into the lowest 
degradation value. It seems that a higher discharge rate will lead 
to a higher degradation value. 

 
Figure 5. Battery capacity curve of SNL LFP 0-100 25℃. 

There are also some battery degradation tests with different 
ambient temperature from the dataset. Fig. 6 shows the capacity 
curve under different operating temperature. All the aging tests 
applied here is under 1C charge rate and 100% DOD. From Fig.  
6, we can observe that the higher ambient temperature leads to 
a higher battery degradation value. It takes more cycles for the 
battery test under 15℃ to degrade to the same capacity level 
than the battery aging test under 25℃ and 35℃. The lowest 
ambient temperature test that is available is 15℃. We believe 
that the extreme low temperature (lower than freeze point) will 
fast degrade the battery as well [18]. Unfortunately, there is no 
such real degradation data to prove it. Also, if we increase the 
discharging rate to 2C, the previous conclusion from Fig. 6. is 
not true anymore. Fig. 7 shows that the battery has the lowest 
degradation when the ambient temperature is at 25℃. This may 
not be true if we switch to another type of battery.  

 
Figure 6. Battery capacity curve of SNL LFP 0-100 1C. 

 
Figure 7. Battery capacity curve of SNL LFP 0-100 2C. 

Fig. 8 and 9 are the dot plots of the degradation value. The 
negative value doesn't mean that there is a negative degradation, 
it is because the difference between the two continuous cycles 
is negative which is due to the stochastic characteristic of the 
lithium-ion battery. The calculated degradation values are 
positive for most of the cycles. After comparing Figs. 8 and 9, 
neglect the negative degradation numbers, we found that Fig. 9 
has more positive degradation points, which indicates that the 
degradation is much faster at the 3C discharge rate. This 
matches the results in Fig. 5. It is worth noting that in the real 
battery degradation data, a negative battery degradation value 
is normal if we look at the two continuous cycles. Thus, a pre-
processing is needed before applying the data. 

 
Figure 8. Battery degradation value of SNL LFP 0-100 0.5C 25℃. 
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Figure 9. Battery degradation value of SNL LFP 0-100 3C 25℃. 

IV.  HEURISTIC BDMS COMPARISON 
The quality analysis of heuristic BDMs used in the literature 

is conducted in this section. There are three models studied in 
this paper: two heuristic models and one benchmark model. 
Model 1 and model 2 represent the two popular heuristic 
models mentioned in the previous section, referred to as linear 
BDM and DOD related BDM respectively. The benchmark 
model represents the averaged degradation value for each cycle 
from the real degradation data. The quality analysis is applied 
with different scenarios including different ambient 
temperature, charge or discharge rate and DOD. Note that the 
𝐶𝐶𝐵𝐵𝐷𝐷 and 𝐶𝐶𝐵𝐵𝐷𝐷

𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡 for model 1 and model 2 are determined by one 
group of the aging tests from the real battery degradation data 
mentioned in section III. The battery degradation value of the 
benchmark model is the average degradation for each cycle 
based on the real battery degradation data under certain 
scenarios. 

Fig. 10 presents the performance of the BDMs under 
different operating ambient temperature. The three groups of 
battery aging tests from the dataset that we applied here are the 
“100% 1C SNL 15 a”, “100% 1C SNL 25 a” and “100% 1C 
SNL 35 a” respectively. We can observe that battery 
degradation predictions by model 1 are the same under different 
operating ambient temperature, so does model 2. This is 
because these heuristic popular BDMs do not consider the 
effectiveness of ambient temperature in their model. Compared 
to the benchmark model, the most accurate prediction on 
battery degradation value is model 2 at 15℃. This might be 
because the aging test that determines the 𝐶𝐶𝐵𝐵𝐷𝐷

𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡 in model 2 is 
under a similar testing condition with the aging test of “100% 
1C SNL 15”.  The benchmark model shows that the average 
degradation per cycle at 35℃ is double more than 15℃. The 
degradation value at 25℃ increases 25% from 15℃. It seems 
that a lower ambient temperature may lead to a lower battery 
degradation value. However, this may not be true; no further 
analysis can be conducted for now since there is no battery 
aging tests under extreme low ambient temperature in the 
battery archive dataset. From Fig. 10, we can conclude that the 
heuristic BDMs predict the battery degradation value with huge 
errors under different operating ambient temperatures. In other 

words, the heuristic BDMs are unable to perform well when 
dealing with varying ambient temperatures.  

Fig. 11 shows the performance of BDMs under different 
discharge rates. The charge rate is fixed as 0.5C of the selected 
aging test data. “100% 1C SNL 15 b” and “100% 2C SNL 15 
b” are the two groups of aging tests that are analyzed here. The 
DOD and the ambient temperature are fixed with 100% and 
15℃. From Fig. 11, similar to the previous analysis, model 1 
and model 2 perform the same on the battery degradation 
prediction with different discharge rates. Compared with the 
benchmark model, Model 2 predicts the same degradation value 
when the discharge rate is 1C. However, both model 1 and 
model 2 have low accuracies on the battery degradation 
prediction at the 2C degradation rate. Thus, we can conclude 
that the heuristic popular BDMs may not work well with 
different discharge rates. For benchmark model, the battery 
degradation value at 2C discharge rate is higher than it at 1C. 
We believe the 3C discharge rate will lead to a much higher 
degradation value. However, the database doesn’t have enough 
3C discharge rate data to be analyzed.    

 

 
Figure 10. Degradation comparison under different ambient temperatures. 

 
Figure 11. Degradation comparison under different discharge rates. 

The DOD is also a key factor that affects the battery 
degradation value. Fig. 12 presents the results of the BDMs 
with different DOD value. Three battery aging tests with 
different DOD values of 100%, 60% and 40% respectively from 
the battery degradation dataset are used here for the analysis. It 
is clear that all three models share the same pattern that higher 
DOD values result into higher degradation values. This results 
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also meet the expectation of the heuristic BDMs. However, the 
accuracy of the prediction of model 1 and model 2 is low. The 
scenarios that determine 𝐶𝐶𝐵𝐵𝐷𝐷  and 𝐶𝐶𝐵𝐵𝐷𝐷

𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡are different from the 
aging tests that are selected here, which leads to the inaccurate 
battery degradation prediction. In other words, the aging test 
that applied to determine the degradation parameter in the 
heuristic models is the key to improve the prediction accuracy. 
It may need to update the 𝐶𝐶𝐵𝐵𝐷𝐷 and 𝐶𝐶𝐵𝐵𝐷𝐷

𝐷𝐷𝐷𝐷𝐷𝐷,𝑡𝑡 each time to keep the 
prediction accurate. However, the open source battery 
degradation data are limited and such data are not always 
available practically. Thus, a better BDM is required to 
accurately predict the battery degradation with limited 
degradation data resource.  

 
Figure 12. Degradation comparison under different DOD values. 

V.  CONCLUSION  
A quality analysis is conducted on the popular battery 

degradation models in this paper. The results show that the 
popular heuristic BDMs often quantify the battery degradation 
very incorrectly under different scenarios, which may lead to a 
substantial unnecessary reduction of battery lifetime. Thus, a 
comprehensive BDM that considers all the battery aging factors 
is needed to accurately predict the battery degradation value for 
use of future energy management systems. The chemical 
characteristics make battery degradation hard to predict. 
However, the analysis of the real battery degradation data 
shows that lower charge or discharge rate and smaller DOD will 
lead to lower degradation values. Also, we can conclude that 
the battery performs differently under different ambient 
temperatures or different battery types. To summarize, this 
paper provides an overview of the performance of popular 
heuristic BDMs and conducts the real battery degradation 
analysis.  
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